

NUMERICAL EXAMPLES IN HEAT

R. ©. DAY.

9
§
$\$$

\sim

$\%$

NUMERICAL EXAMPLES

IN

HEAT

BY
R. E. DAY, M.A.
author of 'exercises in electrical. measurement'

NEW EDITION

LONDON
LONGMANS, GREEN, AND CO.
AND NEW YORK : 15 EAST youth STREET 18S9

PREFACE.

IT is not uncommon for the beginner in Physics to experience considerable difficulty in the application of the principles of Science to the solution of problems in which a definite numerical result is asked for. Considering that a knowledge of physical science which cannot be reduced to concrete numbers is no real knowledge at all, it is very important that, at an early stage of his work, the student should have plenty of practice in applying the facts and theories which he reads about in his text-book, to the numerical solution of such questions as are of frequent occurrence in the practical applications of the subject.

This little book is intended to assist those who are studying Heat in acquiring readiness in solving such problems. I should advise the student who uses it to try for himself those examples which are worked out in full before examining their solutions. Even if he fails to obtain correct results his time will not have been wasted, for he will have to be constantly going back to his text-book for the elucida-
tion of particular points, and the care and attention to detail thus rendered necessary will materially assist him in acquiring a firm hold of the principles of the subject.

My friend Mr. C. D. Webb has kindly assisted me in checking the numerical results, but I shall feel indebted to any student who will point out to me any inaccuracies which may have escaped our notice.

R. E. DAy.

48 Belsize Square, N.W.

CONTENTS.

PAGE:
Thermometric Scales. I
Linear Expansion 5
Compensating Pendulums 14
Superficial Expansion 20
Cubical Expansion 25
Relative Expansion 37
Thermometers 45
Barometer Corrections 52
Boyle's Law 56
Law of Citarles 65
General Measurements of Gases 70
Buoyancy of the Air 76
The Boiling Point and Hypsometry 84
Vapour Pressure and Hygrometry S9
Density of Vapours 102

Contents.

PAGE
Latent Heat of Vapour 110 Latent Heat of Water 120

Water Calorimeters 123
Ice Calorimeters 128
General Calorimetry I32
Conduction 138
Force of Expansion and Contraction 141

Thermodynamics 145
Heat Engines 157
Miscellaneous Exercises 167

NUMERICAL EXAMPLES IN HEAT.

THERMOMETRIC SCALES.

(r.) The scale of a thermometer between the freezing and the boiling points of water is 120 millimetres long. What is the length of each degree (a) on the Centigrade, (b) on the Fahrenheit, and (c) on the Réaumur scale?
(a) In the Centigrade thermometer the freezing point of water is marked 0°, and the boiling point 100°, and therefore the length of a Centigrade degree on this thermometer is

$$
\text { C. }=\frac{120}{100}=1 \cdot 2 \text { millimetre }
$$

(b) In Fahrenheit's thermometer the freezing point of water is marked 32°, and the boiling point 212°, and therefore the space between the boiling and the freezing points contains 180 Fahrenheit degrees. Hence the length of a Fahrenheit degree on this thermometer is

$$
\text { F. }=\frac{120}{180}=\frac{2}{3} \text { millimetre } .
$$

(c) In Réaumur's thermometer the freezing point is marked \circ°, and the boiling point 80°; hence the length of a Réaumur's degree on this thermometer is

$$
\text { R. }=\frac{120}{80}=1 \cdot 5 \text { millimetre } .
$$

(2.) In another thermometer the distance between the boiling and the freezing points is 144 millimetres. What is the length of each degree on the same three scales?

Answer. I.44, $8, ~ \mathrm{I} \cdot 8$ millimetre.
(3.) The length of a Fahrenheit degree on a sensitive thermometer is 20 millimetres. What would be the lengths of a Centigrade and a Réaumur degree?

Answer. C. $=36$ millimetres; R. $=45$ millimetres.
(4.) The scale of a fractional thermometer which ranges from 95° to $105^{\circ} \mathrm{C}$. is 27 centimetres long. Find the length of a Fahrenheit and of a Réaumur degree on this thermometer.

Answer. F. $=15$ millimetres; R. $=33^{\circ} 75$ millimetres.
Note.-In many cases, e.g. in the construction of clinical thermometers, a minute subdivision of the scale over a limited range of temperature is required. When the whole scale of a thermometer embraces only a small fraction of the range of temperature between the boiling and freezing points of water the thermometer is called a fractional one, and as the range is generally very open, minute variations of temperature between the given limits can be easily observed.
(5.) Assuming the mean temperature of the air to be 59° Fahrenheit, what are the corresponding numbers on the Centigrade and Réaumur scales?

For the conversion of 'readings' from one of these scales to either of the other two we have the following equations:

$$
\begin{align*}
& \text { F. }-3^{2}=\frac{9}{5} \mathrm{C} .=\frac{9}{4} \text { R. (I) } \\
& \text { C. }=\frac{5}{4} \text { R. }=\frac{5}{9}\left(\text { F. }-3^{2}\right) . \tag{2}\\
& \text { R. }=\frac{4}{5} \mathrm{C} .=\frac{4}{9}\left(\mathrm{~F} .-3^{2}\right) . \tag{3}
\end{align*}
$$

In the present case we use equations (2) and (3), and we get

$$
\begin{aligned}
& \text { C. }=\frac{5}{9}\left(59-3^{2}\right)=\frac{5 \times 27}{9}=15 ; \\
& \text { R. }=\frac{4}{9}\left(59-3^{2}\right)=\frac{4 \times 27}{9}=12 ;
\end{aligned}
$$

(6.) Find the corresponding temperatures on the Centigrade scale of the following melting points:

Lead, $626^{\circ} \mathrm{F}$. ; bismuth, $508^{\circ} \mathrm{F}$. ; tin, $442^{\circ} \mathrm{F}$.; Rose's metal, $200^{\circ} \mathrm{F}$.

Answers. $330^{\circ} \mathrm{C} . ; 2649^{4 \circ} \mathrm{C}$; $2279_{9}^{7{ }^{\circ}} \mathrm{C}$.; $933^{\frac{1}{3}} \mathrm{C}$.
Note.-Rose's metal is an alloy of the first three, and the student should here notice that the melting point of an alloy is generally lower than that of any of its constituents.
(7.) Convert the following mean temperatures on the Centigrade scale to their equivalents on the Fahrenheit scale :-

Place. Winter. Summer. Range.
Shetland . . $4^{\circ} 05^{\circ} \mathrm{C}$. $11^{\circ} 92^{\circ} \mathrm{C}$. $\quad 7.87^{\circ} \mathrm{C}$.
Moscow . $-10.22^{\circ} \mathrm{C}$. $12{ }^{\circ} 55^{\circ} \mathrm{C} . \quad 27.77^{\circ} \mathrm{C}$.
Answers.
$\begin{array}{llll}\text { Shetland . } & 39^{\circ} 29^{\circ} \mathrm{F} . & 53.46^{\circ} \mathrm{F} . & 14^{.1} 7^{\circ} \mathrm{F} . \\ \text { Moscow . } & 13^{.6^{\circ}} \mathrm{F} . & 54^{\circ} 59^{\circ} \mathrm{F} . & 40.99^{\circ} \mathrm{F} .\end{array}$
(8.) Find the equivalents on the Réaumur scale of the following temperatures:-

Usual temperature of the human body . . $98.6^{\circ} \mathrm{F}$.

$"$	a common frog . . $64^{\circ} \mathrm{F}$
$" \quad$ a chicken . . . $111^{\circ} \mathrm{F}$	

(9.) Water has its greatest density at the temperature of about $39^{\circ} 2^{\circ} \mathrm{F}$. What is the corresponding 'reading' on the Centigrade scale ? Answer. $4^{\circ} \mathrm{C}$.
(Io.) In the expedition to China in 1839 the Russian
army experienced for several days a temperature of $-32.8^{\circ} \mathrm{R}$ What would this be on Fahrenheit's scale?

$$
\text { Answer. }-41 \cdot 8^{\circ} \mathrm{F}
$$

(ir.) Assuming that the absolute zero of the thermodynamic scale is $-\mathbf{2} 73.7^{\circ}$ Centigrade, what is this on Fahrenheit's scale? Answer. $-460.66^{\circ} \mathrm{F}$.
(12.) In De Lisle's thermometer (which is used in Russia) the boiling point of water is marked \circ°, and the freezing point 150°. What degree of Fahrenheit corresponds to 135° of De Lisle? Answer. $50^{\circ} \mathrm{F}$.
(13.) The temperature at which mercury freezes is in. dicated by the same number on the Centigrade and on Fahrenheit's scale. What is the number?

Let $x=$ the number required, then by equation (I) of Example 5 we have

$$
x-3^{2}=\frac{9 x}{5} \therefore x=-40
$$

(14.) At what temperature will the 'reading' on Fahrenheit's scale be twice as great as the corresponding 'reading' on the Centigrade scale?

Let $x^{\circ} \mathrm{F}$. be the required temperature, then the corresponding reading on the Centigrade scale is $\frac{5}{9}(x-32)$, and by the conditions of the problem we have

$$
x=2 \times \frac{5}{9}\left(x-3^{2}\right) \therefore x=320^{\circ} \mathrm{F} .
$$

(15.) Find the temperature for which the 'reading' on a Fahrenheit thermometer is 9 times as great as the corresponding 'reading' Centigrade. Answer. $40^{\circ} \mathrm{F}$.
(16.) At what temperature is the sum of the readings on the R., C., and F. scales equal to 212 ?

Let $x=$ the required temperature on the Centigrade scale, then the corresponding readings on the F . and R . scales will be $F .=3^{2}+\frac{9 x}{5}$ and $R .=\frac{4 x}{5}$, and by the con.
ditions of the problem we have

$$
\begin{aligned}
\frac{4 x}{5}+x+32+\frac{9 x}{5} & =212 \\
\therefore x & =50^{\circ} \mathrm{C} .
\end{aligned}
$$

(17.) The sum of the readings of a thermometer graduated both on Fahrenheit's and the Centigrade scale is 60 . What is the temperature? Answer. $10^{\circ} \mathrm{C}$.
(18.) The difference of the readings of the same thermometer on another occasion was 40 . What was the temperature ? Answer. $10^{\circ} \mathrm{C}$.
(19.) One thermometer marks two temperatures by 20° and 28°, and another marks the same two temperatures by 25° and 35°. What will the latter mark when the former marks 36° ?

Since (28-20) or 8 degrees of the first thermometer indicate the same rise of temperature as $(35-25)$ or 10 degrees of the second thermometer,
\therefore one degree of first thermometer $=\frac{5}{4}$ of a degree of second thermometer, and \therefore a rise of 16 degrees on the first corresponds to a rise of $\frac{\frac{5}{4}}{4} \times 16$ or 20 degrees on the second thermometer. Hence when the first thermometer marks 36° the second will mark $(25+20)=45$.
(20.) A thermometer (A) marks two temperatures by 10 and 12 , and another (B) marks the same two by 12 and 15 . What will B mark when A marks 16? Answer. 21°.

LINEAR EXPANSION.

(土.) A bar of lead whose length at $0^{\circ} \mathrm{C}$. was $152^{2} 3^{2}$ centimetres was placed in a Ramsden's trough and heated to $100^{\circ} \mathrm{C}$., when its length was found to be $152^{\prime 7} 7$ centimetres. Find the coefficient of linear expansion of lead.

If a bar of any substance have its temperature raised $\mathbf{I}^{\circ} \mathrm{C}$., then the fraction expressing the ratio of the increment
of length to its original length is called the coefficient of linear expansion of the substance.

In the present case the increment of length for a rise of $100^{\circ} \mathrm{C}$. in the temperature of the bar is

$$
152 \cdot 76-152 \cdot 32=44 \mathrm{~cm} .
$$

and if the expansion were uniform between the temperatures $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. the coefficient of linear expansion for $1^{\circ} \mathrm{C}$. would be

$$
=\frac{44}{152.3^{2} \times 100}=0000289 .
$$

Note.-The student will find this apparatus fully described in the 'Phil. Trans.,' vol. lxxv. The sensibility was such that the observations of the length of the bar were known to be correct to a millionth part.
(2.) In one of General Roy's experiments ('Phil. Trans.,' vol. lxxv.) a rod of steel which was 5 feet long at $0^{\circ} \mathrm{C}$. was 60.068684 inches long at $100^{\circ} \mathrm{C}$. Find the mean coefficient of linear expansion for $I^{\circ} \mathrm{C}$. for this particular quality of steel. Answer. ©00001 145.
(3.) A bar of zinc 1.97 metre long at $0^{\circ} \mathrm{C}$. was laid in the middle trough of a Ramsden's apparatus, and when it was heated to $100^{\circ} \mathrm{C}$. its length was found to be r 976676 metre. Find the coefficient of linear expansion of zinc.
Answer. -00003388.
(4.) The length of a brass bar at the temperature of melting ice was $60^{\circ} 2$ inches, and at the temperature of boiling water it was $60^{\circ} 3 \mathrm{I}$ inches. Find the mean coefficient of linear expansion for $\mathrm{I}^{\circ} \mathrm{F}$. Answer. ©00001015.
(5.) A steel bar which was 400 centimetres long at $0^{\circ} \mathrm{C}$. was found to be $400{ }^{\circ}$ centimetres long at $100^{\circ} \mathrm{C}$. Find the mean coefficient of linear expansion of steel for $I^{\circ} \mathrm{C}$.

Answer. -0000125.
(6.) A copper rod which was $I^{\prime} 5$ metre long at $0^{\circ} \mathrm{C}$. was found to have increased in length by 2.6 millimetres,
owing to a rise of $100^{\circ} \mathrm{C}$. in its temperature. Find the coefficient of linear expansion of copper.

Answer. 0000173.
(7.) A bar of iron 6.5 inches long at $32^{\circ} \mathrm{F}$. was placed in a Daniell's pyrometer and heated in a furnace to $572^{\circ} \mathrm{F}$., and its length was then found to be 6.522 inches. Find the mean coefficient of expansion for $\mathrm{I}^{\circ} \mathrm{F}$.

$$
\text { Answer. } 00000627 .
$$

(8.) The length of an iron rail at $15^{\circ} \mathrm{C}$. is 30 feet. What will be its length at $10^{\circ} \mathrm{C}$. and at $20^{\circ} \mathrm{C}$. ? The coefficient of expansion of this iron for $I^{\circ} \mathrm{C}$. is $\frac{1}{81 \frac{1}{30}}$.

Let l_{t} represent the length of the bar at any temperature $t^{\circ} \mathrm{C}$., and let its coefficient of linear expansion for $\mathrm{I}^{\circ} \mathrm{C}$. be represented by a; then we have the general formula

$$
\begin{aligned}
& l_{t}=l_{0}(\mathrm{I}+a t) \text {, } \\
& \text { and } \therefore \quad l_{t}=\frac{1+a t^{\prime}}{l_{t}+a t} \text {; }
\end{aligned}
$$

hence $l_{10}=30 \frac{\mathrm{I}+\frac{10}{81900}}{\mathrm{I}+\frac{15}{81900}}=30 \times \frac{81910}{81915}=29.998$ feet,
and $I_{20}=30 \times \frac{81920}{81915}=30.002$ feet nearly.
(9.) The length of an iron telegraph wire at $13^{\circ} \mathrm{C}$. is 220 miles. What will be its length at $-15^{\circ} \mathrm{C}$., and also at $+25^{\circ} \mathrm{C}$.?

Answers. $\left.\begin{array}{llll}219 & \text { miles } 1627.7 \text { yards } \\ 220 & \# & 56.73, "\end{array}\right\}$ nearly.
(io.) A glass scale and a brass one are each one metre long at $10^{\circ} \mathrm{C}$. What will be the difference in their lengths at $100^{\circ} \mathrm{C}$? Answer. 9 r millimetre.
(II.) What must be the length of a brass rod at $15^{\circ} \mathrm{C}$. in order that at $0^{\circ} \mathrm{C}$. it may be exactly two metres long, the coefficient of expansion being 0000189 ?

By the method of Example 8 we have

$$
\begin{aligned}
l_{15} & =l_{0}(\mathrm{I}+a t)=2(\mathrm{I}+15 \times \cdot 0000189) \\
& =2 \cdot 00057 \text { metres nearly. }
\end{aligned}
$$

(12.) The old 'standard yard of 1760^{\prime} ' was the distance between two marks on a certain brass rod at $62^{\circ} \mathrm{F}$. What was this distance at the temperature of $212^{\circ} \mathrm{F}$.?

Answer. 36.056 inches.
(13.) What must be the length of an iron rail at $20^{\circ} \mathrm{C}$. so that it may be exactly 30 feet long at $12^{\circ} \mathrm{C}$.? (For coefficient of expansion see Table, p. 14.)

Answer. 30 feet ${ }^{\circ} 0^{2} 2$ inch.
(14.) Assuming that the maximum temperature in the sun of a 30 -foot cast-iron rail is $124^{\circ} \mathrm{F}$., and that the temperature of the air at the time of laying the rail is $50^{\circ} \mathrm{F}$., what must be the minimum distance apart of the adjacent ends of two consecutive rails? Answer. '1665 inch.

Less than this distance would endanger the line by the possible buckling of the rails. Too great a distance between the rails would make the railroad rough and cause the ends of the rails to wear out rapidly.
(15.) The length of an iron boiler at $0^{\circ} \mathrm{C}$. is 18 feet. What will be the increase of its length if its temperature be raised to $170^{\circ} \mathrm{C}$. ?

Answer. 413 inch.
(16.) The keel of an iron steamship is 400 feet long when it is in water which is at $3^{\circ} \mathrm{C}$. What will be the change in its length when it is at a place in the tropics where the temperature of the water is $28^{\circ} \mathrm{C}$. ?

Answer. 1•35 inch.
(17.) The length of an iron girder-bridge at $0^{\circ} \mathrm{C}$. is 200 feet. What will be its length when, by the heat of the summer sun, its temperature has risen to $40^{\circ} \mathrm{C}$. ?

Answer. 20009 feet.
(18.) What will be the length of the same bridge in winter when its temperature is $-20^{\circ} \mathrm{C}$. ?

Answer. 199.96 feet.
(19.) The distance by rail from San Francisco to Omaha, on the Missouri, is 1,914 miles. Assuming that the average variation of temperature throughout the year is $50^{\circ} \mathrm{C}$., what is the variation in the total length of the rails?

Answer. 1.07662 mile.
(20.) The railroad from Sacramento to Kansas city is 2,002 miles long. How much must be allowed for the expansion of the rails if the average annual range of temperature is $48^{\circ} \mathrm{C}$. ? Answer. 1.08108 mile.
(21.) Four scales were constructed of brass, cast iron, copper, and platinum respectively, and they were all exactly one metre long at $0^{\circ} \mathrm{C}$. Find their lengths at $25^{\circ} \mathrm{C}$. to the nearest hundredth of a millimetre.

Answer. Brass $=1000.47$ millimetres.
Iron $=1000.28$
Copper $=1000 \cdot 43$ "
Platinum $=1000.22 \quad$,
(22.) An iron bar is 1.3^{2} metre long at $\circ^{\circ} \mathrm{C}$. What must be the length of a brass rod at $0^{\circ} \mathrm{C}$. so that for any given change of temperature the expansion of the two rods may be equal?

Let $x=$ required length of brass rod in metres,
$a_{1}=$ coefficient of expansion of brass,
$a_{2}=\quad " \quad " \quad$ " iron;
then $x \times a_{1}=1 \cdot 32 \times a_{2}$;
$\therefore x=1.32 \times \frac{a_{2}}{a_{1}}=1.32 \times{ }_{1875}^{1225}=8624$ metre,
\therefore length of brass rod at $0^{\circ} \mathrm{C}$. $=862^{\circ} 4$ millimetres.
(23.) The secondary wire of Spottiswoode's great induction coil contains 280 miles of copper wire, wound in 340,000 turns. If the temperature change by $30^{\circ} \mathrm{C}$., express in 'turns' the variation in the length of the wire.

One turn $=\frac{280}{340000}$ mile ;
expansion $=280 \times 30 \times 00001715$ mile ;
\therefore variation in length $=\frac{280 \times 30 \times 00001715 \times 340000}{280}$ turns.
$=175$ turns nearly.
(24.) The secondary wire of another induction coil is of copper, and is 60 miles long at $10^{\circ} \mathrm{C}$. What will be its length at $25^{\circ} \mathrm{C}$. ?

Answer. 60 miles 27 yards 6 inches nearly.
(25.) A brass bar and an iron bar are of exactly the same length at $100^{\circ} \mathrm{C}$., and when placed end to end the sum of their lengths at $\circ^{\circ} \mathrm{C}$. is one metre. The coefficient of expansion of iron being -0000122, and that of brass $\cdot 0000189$, find the length of each bar at $\circ^{\circ} \mathrm{C}$.

Let $x=$ length of iron bar at $0^{\circ} \mathrm{C}$. in metres,
then $\mathrm{I}-x="$ brass " "
then if $a_{1}=$ coefficient of expansion of iron, and a_{2} that of brass,

$$
x\left(1+100 a_{1}\right)=(1-x)\left(1+100 a_{2}\right),
$$

$\therefore \frac{x}{1-x}=\frac{1+100 a_{2}}{1+100 a_{1}}=\frac{1.00189}{1.00122}=1.00067$ nearly ;
$\therefore x={ }^{5} 50017$ metre nearly;
\therefore length of iron bar $=500^{\circ} 17$ millimetres nearly,
" brass,$=499^{\circ} 8_{3}$ "
"
(26.) The length of a brass rod at the temperature of $15^{\circ} \mathrm{C}$. is two metres. What must be the length at $0^{\circ} \mathrm{C}$. of an iron bar so that at $30^{\circ} \mathrm{C}$. these two bars may be of exactly the same length ? Answer. 1 • 53 metre.
(27.) A bar of platinum is $\mathrm{I} \cdot 82$ metre long at $0^{\circ} \mathrm{C}$. What must be the length at $0^{\circ} \mathrm{C}$. of a brass bar so that if the two bars be heated to $100^{\circ} \mathrm{C}$. they may be of exactly the same length? Answer. r-8181 metre.
(28.) What should be the length at $0^{\circ} \mathrm{C}$. of the brass bar so that the two bars may be of the same length at $300^{\circ} \mathrm{C}$. ? Answer. I. 8146 metre nearly. ${ }^{-}$
(29.) If the bars mentioned in Example 28 were riveted together at one extremity but free at every other point, what would be the distance between their free ends at $20^{\circ} \mathrm{C}$. ?

Answer. 5 millimetres nearly.
(30.) If the difference in length of the two bars was $5 \cdot 13$ millimetres, what was their temperature?

Let $x^{\circ} \mathrm{C} .=$ required temperature ; then $\begin{aligned} \text { length of platinum at } x^{\circ} \mathrm{C} & =1.82(\mathrm{I}+x \times 00000875), \\ ", \quad \text { brass } \quad, & =1.8146(\mathrm{I}+x \times 00001875) ;\end{aligned}$ $\therefore \mathrm{r} 82(\mathrm{I}+x \times 00000875)-\mathrm{I} 8 \mathrm{I} 46(\mathrm{r}+x \times \cdot 0000 \mathrm{I} 875)$ $={ }^{000513}$, whence $x=15$ nearly.

Note.-This example illustrates the use of Borda's pyrometric standard measure, which was employed by him in measuring the great arc of the meridian in France. By this arrangement the measuring bar acted as a thermometer which indicated its own temperature.
(3I.) The apparent length of a wire when measured with a brass scale at $15^{\circ} \mathrm{C}$. was $22^{\circ} 735$ metres. If the brass scale was correctly graduated at $0^{\circ} \mathrm{C}$., what was the real length of the wire?

The apparent length is the length indicated by the number of graduations of the scale. As the scale expands with the heat, the absolute value of each subdivision is greater than its indicated value.

At $15^{\circ} \mathrm{C}$. the true length of each apparent centimetre of the scale is $1+15 \times 00001875=1.00028125$ centimetre, and if x represent the true length of the wire in centimetres

$$
x=2273.5 \times 1 \circ 00028 \mathrm{I} 25=2274.14 \text { centimetres }
$$

(32.) A platinum metre scale was correct at $0^{\circ} \mathrm{C}$. The apparent length of a rail at $30^{\circ} \mathrm{C}$. was, according to this scale, $10^{\circ} 278$ metres. What was its true length ?

Answer. 10.2807 metres nearly.
Note. -This correction for the expansion of the scale is practically insensible for ordinary changes of temperature and for short lengths.
(33.) A yard denotes the length at $16^{\frac{2}{3}} \mathrm{C}$. of a certain standard brass bar, and the metre is the length at $0^{\circ} \mathrm{C}$. of a certain standard platinum bar. It is known that one metre
is equal to 39.37043^{2} inches. Compare the lengths of the two bars at $27^{\circ} \mathrm{C}$. and at $0^{\circ} \mathrm{C}$. Answer. Ratio at $27^{\circ}=1.09367$.
" $\quad 0^{\circ}=1.09396$.
(34.) The length of wire between a distant signal and a signal box is 800 yards, and the coefficient of expansion of the wire for $\mathrm{I}^{\circ} \mathrm{C}$. is $\frac{1}{81900}$. Assuming that the wire has to be lengthened 4 inches to bring the signal to 'danger,' find what fall of temperature would lower the signal from 'danger ' to 'clear.'

Let $x=$ required change of temperature;

$$
\text { then } \frac{x \times 800 \times 3^{6}}{81900}=4, \text { whence } x=11_{8}^{3 \circ} \mathrm{C} \text {. }
$$

(35.) At a given temperature an iron pendulum of a certain length beats seconds. The coefficient of expansion of the iron being 0000118 , find the diminution in the number of vibrations per day when the temperature has risen $20^{\circ} \mathrm{C}$.

The time of oscillation of a pendulum at a given place varies directly as the square root of its length. Hence if l_{1}, t_{1}, and l_{2}, t_{2} represent the lengths and corresponding times of oscillation, we shall have

$$
\begin{gathered}
l_{2}=l_{1}(\mathrm{I}+20 a), \\
\therefore \frac{t_{2}}{t_{1}}=\sqrt{\frac{l_{2}}{l_{1}}}=\sqrt{\mathrm{I}+20 a}
\end{gathered}
$$

and if n_{1} and n_{2} be the numbers of oscillations per day,

$$
\begin{gathered}
\frac{n_{1}}{n_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{1+20 a}=\sqrt{1.000236}=1.000118 \\
\text { But } n_{1}=3600 \times 24 ; \quad \therefore n_{2}=\frac{3600 \times 24}{1.000118}=86389.8 ; \\
\therefore n_{1}-n_{2}=86400-86389.8=10.2 .
\end{gathered}
$$

(36.) A clock has a brass pendulum whose coefficient of expansion is 0000189 . What will be the difference in its
rate per day when the temperature is $0^{\circ} \mathrm{C}$. and when it is $30^{\circ} \mathrm{C}$. ? Answer. 24.5 seconds.
(37.) The time of one oscillation of an iron pendulum is 1.434 second. Find the number of oscillations it will lose per day if the temperature be increased by 15° F., the coefficient of expansion for $1^{\circ} \mathrm{C}$. being 0000122 .

Answer. 3 nearly.

(38.) A clock with an iron pendulum beats seconds at a certain temperature. What will be the change in temperature if it loses one second in 24 hours, the coefficient of expansion for $I^{\circ} \mathrm{C}$. being $\frac{1}{85859}$?

Let $x^{\circ} \mathrm{C}$. be the required change in the temperature ; then, as in Example 35, we have

$$
\frac{n_{1}}{n_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{l_{2}} \frac{l_{1}}{l_{1}}=\sqrt{1+x a} .
$$

But $n_{1}=86400$, and $n_{2}=86399$;

$$
\begin{aligned}
& \therefore \mathrm{x}+x a=\left(\frac{86400}{86399}\right)^{2} \text { and } a=\frac{1}{88889} ; \\
& \begin{aligned}
\therefore x & =\frac{172799 \times 88889}{(86399)^{2}}=2.0576 \\
& =+2^{\circ} \mathrm{C} . \text { approximately }
\end{aligned}
\end{aligned}
$$

N.B. The length of a seconds pendulum is about $39^{\circ} 14$ inches.
(39.) An iron pendulum 4 feet long makes 78,030 oscillations in one day. On another day it is observed to make only 78,021 oscillations in the day. Taking the coefficient of expansion of the iron for $\mathrm{I}^{\circ} \mathrm{C}$. at 000012204 , find the change of temperature. Answer. $18.9^{\circ} \mathrm{C}$.
(40.) In consequence of a rise of temperature a seconds pendulum loses 8 seconds in a day. Assuming the coefficient of expansion of the rod for $1^{\circ} \mathrm{C}$. to be 000012 , find the change of temperature. Answer. $154^{\circ} \mathrm{C}$. nearly.
(41.) An iron pendulum which makes 30 vibrations in a minute is 156.8 inches long, and its coefficient of expansion
for $\mathrm{I}^{\circ} \mathrm{C}$. is $\frac{1}{58 \frac{1}{889}}$. What must be the change of temperature if it were to lose 30 seconds in 24 hours?

Answer. $61^{\circ} 79^{\circ} \mathrm{C}$. nearly.
(42.) A cast-iron rod 16.5 centimetres long at $15^{\circ} \mathrm{C}$. was placed in a Daniell's pyrometer and inserted in a furnace, and after it had acquired the temperature of the furnace its length was found to be $16 \cdot 59$ centimetres. Taking 0000112 to be the coefficient of expansion, find the temperature of the furnace. Answer. $502^{\circ} \mathrm{C}$.

Note- Unless otherwise stated, the following are the coefficients of linear expansion for $\mathrm{I}^{\circ} \mathrm{C}$. which have been employed in these Examples :-

COMPENSATING PENDULUMS.

(土.) A small heavy bob c is attached to the lower end of a thin iron wire сва (see fig. I) which passes freely through a small hole in the base of a vertical rectangle of brass rods, and is attached to the top at a so that the portion BC can oscillate as a pendulum. What must be the length of $A B$ so that the distance \quad C may be one yard at all temperatures ?

Let a_{2} and a_{1} be the coefficients of expansion of brass and iron for $\mathrm{I}^{\circ} \mathrm{C}$., and the length of ABC at $\circ^{\circ} \mathrm{C}$. be l feet, that of $\mathrm{A} \mathrm{B}=x$ feet.

Then at $\circ^{\circ} \mathrm{C}$. we shall have

$$
l-x=3(1)
$$

and at any other temperature $\rho^{\circ} \mathrm{C}$. we shall have

$$
\begin{equation*}
l\left(\mathbf{1}+a_{1} t\right)-x\left(\mathbf{1}+a_{2} t\right)=3 \tag{2}
\end{equation*}
$$

From these two equations we get

$$
\begin{equation*}
l a_{1}=x a_{2} \tag{3}
\end{equation*}
$$

and eliminating l between equations (I) and (3)

$$
x=\frac{3 a_{1}}{a_{2}-a_{1}}
$$

and

$$
\left.\begin{array}{l}
a_{1}=00000122 \\
a_{2}=0000188
\end{array}\right\} \therefore x=\frac{3 \times \cdot 0000122}{0000066}=51_{11}^{6} \text { feet. }
$$

(2.) A pendulum is constructed of a glass rod 3 feet long, having a small flange at the bottom upon which rests a heavy leaden disc. What must be the radius of the disc so that the distance between the point of suspension of the rod and the centre of the disc may not vary with changes of temperature ?

$$
\text { Let } \begin{aligned}
l & =\text { length of the rod at } o^{\circ} \mathrm{C} . \\
r & =\text { radius of disc } " \\
a_{1} & =\text { coefficient of expansion of glass } \\
a_{2} & =" \# \text { lead ; }
\end{aligned}
$$

then (see fig. 2) at $0^{\circ} \mathrm{C}$.

$$
\mathrm{AC}=\mathrm{AB}-\mathrm{BC}=l-r \quad \cdot \cdot \cdot(\mathrm{I})
$$

and at $t^{\circ} \mathrm{C}$

$$
\begin{equation*}
\mathrm{AC}=l\left(\mathrm{I}+a_{1} t\right)-\gamma\left(\mathrm{I}+a_{2} t\right) \tag{2}
\end{equation*}
$$

From equations (1) and (2) we get

$$
\begin{aligned}
0 & =l a_{1} t-r a_{2} t \\
\therefore r & =l \frac{a_{1}}{a_{2}}=\frac{3 \times \cdot 00000865}{00002855} \text { foot } \\
& =10 \cdot 9 \text { inches approximately. }
\end{aligned}
$$

(3.) A Graham's mercurial pendulum consists of a glass cylinder containing mercury which is suspended by a steel
rod 3 feet long, the lower end of which has a flange supporting the glass cylinder. The coefficient of expansion of the steel for $1^{\circ} \mathrm{C}$. being $\mathrm{T}_{5 \frac{1}{685}}$, and that of the apparent expansion of mercury in glass $\frac{1}{6480}$, what must be the height of the mercury column?

Let $x=$ length of the mercury column in feet
$l=\quad$, steel rod in feet
$a_{1}=$ coefficient of linear expansion of steel
$a_{2}=\quad$ apparent \quad mercury in glass.
When the temperature rises $t^{\circ} \mathrm{C}$. the centre of mass of the mercury will be lowered $a_{1} l$ feet in consequence of the expansion of the steel rod, and will be raised $\frac{x}{2} \times a_{2}$ in consequence of the expansion of the mercury, and if these two effects are to neutralise each other we must have

$$
\begin{aligned}
& \frac{x}{2} \times a_{2}=a_{1} l \\
& \therefore x
\end{aligned}=\frac{a_{1}}{a_{2}} \times 2 l=\frac{6480}{79680} \times 2 \times 3 .
$$

The diameter of the mercury cylinder must be sufficiently great that the centre of oscillation of the whole pendulum may be very near the middle of the mass of mercury.

This pendulum was invented by Graham in 172 I .
(4.) Another Graham's pendulum consisted of a glass rod terminating in a glass cylinder containing mercury. The coefficient of expansion of the glass for $\mathrm{I}^{\circ} \mathrm{C}$. being $\pi \frac{1}{100}$, and the whole length of the pendulum 5 feet, what would be the requisite height of the mercury in the cylinder? Answer. $6 \cdot 7$ inches nearly.
(5.) An iron tube A в (see fig. 3) has a zinc tube inside it which is rigidly attached to a flange at the bottom. From
the top of the zinc tube, and coaxial with it, there hangs an iron rod CD which carries at its lower end a heavy bob. If the length of A b be 3 feet and of $C D 3$ feet 6 inches, what must be the length of the zinc tube so that the distance AD may remain constant?

$$
\begin{gathered}
\text { Let } a_{1}=\text { coefficient of expansion of iron } \\
a_{2}=" \# \quad \text { zinc } ;
\end{gathered}
$$

then for compensation we must have

$$
\begin{aligned}
(\mathrm{AB}+\mathrm{CD}) a_{1} & =\mathrm{BC} \times a_{2} \\
\therefore \mathrm{BC} & =\frac{a_{1}}{a_{2}} \times 6.5 \text { feet } \\
& =\frac{1125 \times 6.5}{3389}=2.158 \text { feet. }
\end{aligned}
$$

(6.) 'Smeaton's' pendulum has a solid glass rod with a shoulder at the bottom upon which rests a coaxial tube of zinc a foot long which expands upwards. This is enclosed in an iron tube a foot long with a flange at the top by which it rests on the zinc and expands downwards. At the bottom of the iron tube is a shoulder upon which rests a coaxial lead tube a foot long. What must be the length of the glass rod so that with these three massive tubes forming the bob there may be compensation ?

Answer. 5 feet 11 inches very nearly.
Note.-This construction is easy and cheap, but the objection to it is that the parts the expansions of which are opposed to each other are not equally exposed to the external air, and are apt to be at somewhat different temperatures.
(7.) 'Reid's' compensation pendulum has a long central iron rod descending considerably below the bob. Upon a flange at the lower end of the iron rod rests a zinc tube, and the bob is supported on the top of the zinc tube. If the distance between the point of suspension and the bob is to be always 3 feet, what must be the respective lengths of the iron rod and zinc tube at $0^{\circ} \mathrm{C}$. ?

$$
\begin{align*}
\text { Let } l_{1} & =\text { length of iron rod at } 0^{\circ} \mathrm{C} \text {. in feet } \\
l_{2} & \text { zinc tube } \# " \# \\
a_{1} & =\text { coefficient of expansion of iron } \\
a_{2} & =\# \# \tag{I}
\end{align*}
$$

then at $0^{\circ} \mathrm{C} . \quad l_{1}-l_{2}=3$
at $t^{\circ} \mathrm{C} . \quad l_{1}\left(\mathrm{I}+a_{1} t\right)-l_{2}\left(\mathrm{I}+a_{2} t\right)=3$

$$
\begin{equation*}
\therefore \frac{l_{1}}{l_{2}}=\frac{a_{2}}{a_{1}} \tag{2}
\end{equation*}
$$

and from (1) and (3) we get

$$
\begin{aligned}
& l_{1}=\frac{a_{2}}{a_{2}-a_{1}} \times 3=\frac{3389}{33^{8} 9-1125} \times 3=4.49 \text { feet } \\
& l_{2}=\frac{a_{1}}{a_{2}-a_{1}} \times 3=1.49 \text { feet. }
\end{aligned}
$$

Note.-Captain Kater's pendulum of 1808, which was older than this one, differed from it only in having a wooden rod.
(8.) A steel rod attached to and descending from the suspension is partially enclosed by a zinc tube 25 inches long which rests on a flange at the lower end of the rod. A steel tube with an inner flange at the top is supported by and encloses the zinc tube, and to the lower end of the steel tube a heavy bob is attached. The coefficient of expansion of zinc being about 2.7 times that of steel, what must be the whole length of the steel rod and steel tube so that there may be compensation? Answer. 67.5 inches.
(9.) A 'gridiron' pendulum consists of a long rectangle of iron rods suspended by the centre of its upper side. The lower side has a hole in the centre through which passes an iron rod carrying the bob, and this rod is suspended from a cross-piece which is supported on two vertical bars of brass, whose lower ends are rigidly attached to the lower side of the iron rectangle. If the distance between the point of suspension and the centre of oscillation is to be $99^{\circ} 4^{2}$ centi-
metres and to be invariable, what must be the lengths of the iron and brass rods?

The student will notice that the 'gridiron' pendulum is a particular case of a tube pendulum such as that described in Example 5, and that a longitudinal section of such a pendulum would form a 'gridiron' with the advantage that all parts would be equally acted upon by the external air.

Let $l_{1}=$ length of iron rectangle + central iron rod
$l_{2}=\quad, \quad$ one of the brass rods
$a_{1}=$ coefficient of expansion of iron
$a_{2}=\quad " \quad$ brass;
then, as before, we have

Hence $l_{1}=\frac{a_{2}}{a_{2}-a_{1}} \times 99^{\circ} 42=\frac{1875}{1875-1225} \times 99^{\circ} 42$

$$
=\frac{1875}{650} \times 99.42=286.79 \text { centimetres nearly }
$$

$$
l_{2}=187.37 \text { centimetres. }
$$

(io.) What would have been the values of l_{1} and l_{2} if zinc had been used instead of brass?

Answer. 155% and 56.28 centimetres.
Note.-The length of a seconds pendulum anywhere in England is about $99^{\circ} 4^{2}$ centimetres.
(Ir.) At the Paris Exhibition of 1855 there was a compensating pendulum which consisted of a jointed rhombus of iron rods each 2 feet long with a horizontal diagonal of brass. What would have to be the length of this diagonal so that if the rhombus were suspended from one free corner the distance between that and the lower one should not vary with the temperature?

Let A (see fig. 4) be the upper corner, c the lower one,

$$
\begin{aligned}
& l_{1}-l_{2}=99^{\circ}{ }^{2} \text {. . . (} \mathrm{I} \text {) } \\
& l_{1}\left(\mathrm{I}+a_{1} t\right)-l_{2}\left(\mathrm{I}+a_{2} t\right)=99^{\circ} 4^{2} \text {. . . (2) } \\
& \therefore \frac{l_{1}}{l_{2}}=\frac{a_{2}}{a_{1}} \cdots \text {. (3) }
\end{aligned}
$$

BD the horizontal diagonal and E its intersection with the vertical through A and c.

Also let $a_{1}=$ coefficient of expansion of iron

$$
a_{2}=\quad \# \quad \# \quad \text { brass ; }
$$

then by Euclid I., Prop. 47, we have
At $0^{\circ} \mathrm{C} . \quad \mathrm{AE} E^{2}=A B^{2}-\mathrm{BE}^{2}$
and at $t^{\circ} \mathrm{C} . \quad \mathrm{AE}^{2}=\mathrm{AB}^{2}\left(\mathrm{x}+a_{1} t\right)^{2}-\mathrm{BE}^{2}\left(\mathrm{x}+a_{2} t\right)^{2}$
$=\mathrm{AB}^{2}-\mathrm{BE}^{2}+2 t\left(\mathrm{AB}^{2} a_{1}-\mathrm{BE}^{2} a_{2}\right)$ nearly.
Hence $\frac{\mathrm{AB}}{\mathrm{BE}}=\sqrt{\frac{a_{2}}{a_{1}}}$
\therefore diagonal $=2 \mathrm{BE}=2 \mathrm{AB} \times \sqrt{\frac{\overline{a_{1}}}{\overline{a_{2}}}}=4 \times \sqrt{\frac{1225}{1875}}$
$=3.233$ feet
$=3$ feet 2.8 inches nearly.

SUPERFICIAL EXPANSION.

(r.) The coefficient of linear expansion of lead being ${ }_{35 \frac{1}{126}}$ for $x^{\circ} \mathrm{C}$., and a square sheet of lead having its temperature raised from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$., what error will be committed by assuming that the coefficient of superficial expansion is twice that of linear expansion?

Let $A=$ original area of sheet of lead in square centimetres
$A^{\prime}=$ expanded area of sheet of lead in square centimetres
$a=$ original length of one side in centimetres
$a=$ coefficient of linear expansion ;
then the length of a side at $100^{\circ} \mathrm{C}$. is $a(\mathrm{r}+100 a)$, and \therefore the area at $100^{\circ} \mathrm{C}$. is

$$
\begin{aligned}
\mathrm{A}^{\prime} & =a^{2}(\mathrm{I}+100 a)^{2}=\mathrm{A}\left\{\mathrm{I}+200 a+10000 a^{2}\right\} \\
& =\mathrm{A}\left\{\mathrm{I}+\frac{200}{35026}+\frac{10000}{(35026)^{2}}\right\} \\
& =\mathrm{A}\{\mathrm{I}+.00571004+000008 \mathrm{I} 5\} \\
& =\mathrm{A} \times 1.00571819 .
\end{aligned}
$$

As far as the seventh place of decimals the error committed by neglecting the third term is

$$
\mathrm{A} \times \cdot 0000082,
$$

and if the original area had been i square metre the error would have been 082 of a square centimetre.
(2.) A square metre of cast iron is heated from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. Find the error committed in calculating the expanded area by taking the coefficient of superficial expansion as equal to twice that of linear expansion, which is ${ }_{88} \frac{1}{8} \frac{1}{50}$ for $\mathrm{I}^{\circ} \mathrm{C}$. Anstuer. 0127 of a square centimetre.

Note.-These examples show that for all ordinary purposes the coefficient of superficial expansion may be taken to be sensibly equal to twice the coefficient of linear expansion. The error thus incurred is much less than the limit of experimental error in the determination of the value of the coefficient of linear expansion.
(3.) The edge of a square sheet of lead expands when heated in the ratio of $1: 1.0028$. Find its superficial expansion both accurately and approximately.

By the method of Example 9 we find that

$$
\begin{aligned}
\frac{\delta_{\mathrm{A}}}{\mathrm{~A}} & =2 \times \cdot 0028+\cdot 00000784 \text { accurately } \\
& =2 \times \cdot 0028 \text { approximately } .
\end{aligned}
$$

(4.) At $10^{\circ} \mathrm{C}$. a plate of cast iron has an area of 15 square feet. What will be its area at $20^{\circ} \mathrm{C}$. and at $0^{\circ} \mathrm{C}$. respectively?

Let $\mathrm{A}_{2}=$ area of the cast-iron plate at $t^{\circ} \mathrm{C}$. and $a=$ coefficient of linear expansion ; then, since the coefficient of superficial expansion is equal to twice the coefficient of linear expansion,

$$
A_{t}=A_{0}(1+2 a t),
$$

$$
\therefore A_{0}=\frac{A_{t}}{1+2 a t}=\frac{A_{1 n}}{1+\frac{2 \times 10}{88889}}=\frac{15 \times 88889}{88909}
$$

$=14.9966$ square feet.

$$
\text { Also } \mathrm{A}_{20}=\mathrm{A}_{10} \times \frac{88929}{88909}=15.0034 \text { square feet. }
$$

(5.) The area of some lead roofing at $10^{\circ} \mathrm{C}$. is 400 square feet. What will be the increase in area if the temperature rises to $30^{\circ} \mathrm{C}$.? Answer. $65^{\circ} 66$ square inches.
(6.) The heating surface of the copper tubes of a boiler is $\mathrm{I}, 200$ square feet at $10^{\circ} \mathrm{C}$. What will be their area when the temperature of the tubes has risen to $154^{\circ} \mathrm{C}$. ?

Answer. $1205^{\circ} 9$ square feet nearly.
(7.) A cylindrical iron boiler terminated by plane ends is 16 feet long and 4 feet 6 inches in diameter at $13^{\circ} \mathrm{C}$. What will be the increase in its surface when the temperature rises to $100^{\circ} \mathrm{C}$. ?

With the notation employed in Example 4 we have

$$
\begin{aligned}
\mathrm{A}_{13} & =2 \times \pi \times(2.25)^{2}+2 \pi \times 2.25 \times 16 \\
& =258.04 \text { square feet. } \\
\text { Also } \mathrm{A}_{100} & =\mathrm{A}_{13} \frac{\mathrm{I}+\frac{2 \times 100}{88889}}{1+\frac{13 \times 2}{88889}}=258.04 \times \frac{89089}{88915} \\
& =258.51 \text { square feet } \\
\therefore \delta \mathrm{A}= & 258.5 \mathrm{I}-258.04=47 \text { of a square foot } \\
& =67.68 \text { square inches. }
\end{aligned}
$$

(8.) The diameter of a brass disc at $0^{\circ} \mathrm{C}$. is 100 centimetres. By how much will the area of the disc be increased if the temperature be raised to $50^{\circ} \mathrm{C}$.?

Answer. $14^{\circ 73}$ square centimetres nearly.
(9.) Assuming that the contraction of cast iron in cooling is $\frac{1}{120}$ th of its length, what must be the diameter of the pattern for the mould of a fly wheel which is to be 20 feet in diameter? Answer. 20 feet 2 inches.

Note. -The usual rule is to make the pattern for a fly wheel $\frac{1}{10}$ th of an inch on a foot larger than the wheel is required to be.
(ro.) The diameter of an iron fly wheel is to be 25 feet. What must be the diameter of the pattern?

Answer. 25 feet $2 \frac{1}{2}$ inches.
(ri.) The area of the upper surface of a rectangular plate of cast iron at $0^{\circ} \mathrm{C}$. is equal to 25 square decimetres. What will be its area if its temperature be raised to $90^{\circ} \mathrm{C}$.? Answer. $25^{\circ} 05$ of a square decimetre.
(i2.) If the radius of a brass circle at $0^{\circ} \mathrm{C}$. be 4 centimetres, by how much is the area of this circle greater at $40^{\circ} \mathrm{C}$. than it is at $0^{\circ} \mathrm{C}$. ?

Answer. 7×54 square millimetres.
(I3.) A cast-iron plate at $10^{\circ} \mathrm{C}$. has a surface area of 12 square feet. What will be its area at $30^{\circ} \mathrm{C}$. and at $0^{\circ} \mathrm{C}$. respectively ?

Answer. 12 '0054 and 1r'9973 square feet.
(14.) A brass ball whose diameter is 6 centimetres can easily pass through a circular hole of 6 or centimetres diameter. Find the range of temperature through which the ball must be heated so as just not to be able to pass through the hole.

Let $x^{\circ} \mathrm{C}$. $=$ range of temperature required, then

$$
\begin{aligned}
& 6\left(1+\frac{x}{53333}\right)=6.01 \\
& \quad \therefore x=\frac{\text { OI } \times 53.333}{6}=88.9^{\circ} \mathrm{C} . \text { nearly. }
\end{aligned}
$$

(15.) At the Manchester Exhibition of 1857 Sir Joseph Whitworth exhibited an inter nal gauge having a cylindrical aperture of 5770 inch in diameter, and an external gauge consisting of a solid steel cylinder 5769 of an inch in diameter. This was so loose that it did not seem to fit at all. What increase of temperature would make the external gauge exactly fit the internal one? Answer. $13.81^{\circ} \mathrm{C}$.
(16.) The dimensions of a rectangular steel bar magnet were as follows: length $=30$ centimetres, breadth $=4$ centimetres, thickness $=\cdot 6$ centimetre ; and its density
at $0^{\circ} \mathrm{C}$. was $7 \cdot 8$. If its temperature changed from $0^{\circ} \mathrm{C}$. to $30^{\circ} \mathrm{C}$. what would be the change in its moment of inertia about a vertical axis parallel to the thinnest edge, the coefficient of linear expansion for $I^{\circ} \mathrm{C}$. being -000012 ?

By the method of Example 8, p. 48 of Day's 'Electrical Measurements,' we have

$$
\mathrm{K}_{0}=m \times \frac{x^{2}+y^{2}}{12}=56 \mathrm{I} .6 \times \frac{30^{2}+4^{2}}{12}=42869 \text { nearly } .
$$

After expansion by heat

$$
\begin{aligned}
& y^{\prime}=30(\mathrm{I}+30 \times \cdot 000012)=30.0108 \\
& y^{\prime}=4(\mathrm{I}+30 \times \cdot 000012)=4 \cdot 00144, \\
& \therefore K_{30}= 561 \cdot 6 \frac{(30.0108)^{2}+(4.00144)^{2}}{12}=42900 \text { nearly } \\
& \therefore \delta K=42900-42869=31 .
\end{aligned}
$$

(I 7.) What would have been the change in the moment of inertia about the same axis if the length of the bar had been I metre and its breadth 2 centimetres, all else remaining the same as before ? Answer. $57^{\circ} 6$.
(18.) The dimensions of a cast-iron cylinder at $0^{\circ} \mathrm{C}$. are as follows : length $=50$ centimetres, diameter $=20$ centimetres, and density $=7 \%$. The coefficient of linear expansion being 0000122 , find the change in its moment of inertia about the axis when the temperature rises to $25^{\circ} \mathrm{C}$.

If the moment of inertia of any body about a given axis be denoted by k , and if in consequence of a change of temperature of t° the linear dimensions of the body are altered in the ratio of $\mathrm{I}+a t: \mathrm{I}$, then the moment of inertia with respect to the given axis becomes $(1+a t)^{2} \mathrm{~K}$ or approximately $(\mathrm{I}+2 a t) \mathrm{K}$.

In the present case

$$
\begin{aligned}
\delta_{\mathrm{K}} & =\frac{\mathrm{M}}{2} r^{2} \times 2 a t=\frac{\pi \times 10^{2} \times 50 \times 7^{\circ} 2}{2} \times 10^{2} \times 0006 \mathrm{I} \\
& =3450 \text { nearly. }
\end{aligned}
$$

(19.) The moment of inertia of a cast-iron fly wheel at $0^{\circ} \mathrm{C}$., when expressed in foot pounds, is 50750 . What will be the change in its value when the temperature rises to $20^{\circ} \mathrm{C}$., the coefficient of expansion being 0000112 ?

Answer. 22.7 nearly.

CUBICAL EXPANSION.

(1.) The edge of a cube of lead is 10 centimetres long at $0^{\circ} \mathrm{C}$. If the cube be heated to $100^{\circ} \mathrm{C}$. and the coefficient of linear expansion of lead for $I^{\circ} \mathrm{C}$. be $\frac{{ }_{35} \frac{1}{026}}{}$, what error will be made in calculating the new volume of the cube by assuming that the coefficient of cubical expansion is 3 times that of linear expansion?

Let $\mathrm{v}=$ original volume of cube in cubic centimetres
$\mathrm{v}^{\prime}=$ final
"
"
"
Then $v^{\prime}=v\left\{I+\frac{100}{35026}\right\}^{3}$
$=v\left\{1+\frac{3 \times 100}{35026}+3 \times\left(\frac{100}{35026}\right)^{2}+\left(\frac{100}{35026}\right)^{3}\right\}$
$=\mathrm{v}\{\mathrm{I}+00086507+\cdot 000024453+\cdot 000000023\}$
$=\mathrm{v} \times \mathrm{I} 0085^{8} 95$ as far as the 7 th place of decimals.
But $\mathrm{v}=1000$ cubic centimetres
\therefore error $={ }^{\circ}{ }^{0} 244$ c.c.
(2.) If the cube had been of cast iron, whose coefficient of linear expansion is $\frac{1}{88889}$ for $I^{\circ} \mathrm{C}$., what would have been the corresponding error? Answer. o3 8 c.c.

Note.-These examples show that, as a general rule, the coefficient of cubical expansion may be taken as equal to 3 times that of linear expansion.
(3.) The diameter of a brass ball at $3^{\circ} \mathrm{C}$. is 15 centimetres. What will be the volume of the ball at $80^{\circ} \mathrm{C}$. ?

Let $\mathrm{v}_{t}=$ volume of the ball at $t^{\circ} \mathrm{C}$;

$$
\begin{aligned}
& \text { then } v_{80}=v_{0}\left(x+\frac{3 \times 80}{53333}\right)=v_{0} \frac{53573}{53333} \\
& \text { and } v_{3}=v_{0}\left(\mathrm{r}+\frac{3 \times 3}{53333}\right)=\mathrm{v}_{0} \frac{53342}{53333} \\
& \therefore \mathrm{v}_{80}=\frac{53573}{53333} \times \frac{53333}{5334^{2}}=\mathrm{v}_{3}=\frac{53573}{5334^{2}} \times \frac{4}{3} \pi \times(7.5)^{3} \\
& =\text { 1774.8 c.c. }
\end{aligned}
$$

(4.) The volume of a cast-iron ball at $10^{\circ} \mathrm{C}$. is 2 cubic decimetres. If its temperature be raised to $50^{\circ} \mathrm{C}$. what will be its increase of bulk ? Answer. $2^{\circ} 7$ c.c.
(5.) Find the volume of 20 kilogrammes of mercury at $100^{\circ} \mathrm{C}$., the coefficient of expansion for $\mathrm{I}^{\circ} \mathrm{C}$. being $\frac{1}{5550}$ and the density of mercury at $0^{\circ} \mathrm{C}$. being 13.59 .

Let v_{t} represent the volume of this mass of mercury at $t^{\circ} \mathrm{C}$, ; then, since the absolute density of a substance is the mass of x cubic centimetre of the substance expressed in grammes, we have

$$
\begin{gathered}
\mathrm{v}_{0}=\frac{20000}{\mathrm{I}_{3} .59} \mathrm{c.c.} \\
\text { Also } \begin{aligned}
\mathrm{v}_{100}= & \mathrm{v}_{0}(\mathrm{I}+100 a)=\mathrm{v}_{0}\left(\mathrm{I}+\frac{100}{5550}\right)=\mathrm{v}_{0} \times \frac{5650}{5550} \\
= & \frac{20000}{13.59} \times \frac{5650}{5550}=1498.19 \mathrm{c.c} .
\end{aligned}
\end{gathered}
$$

(6.) What is the mass of a cast-iron cylinder which at $25^{\circ} \mathrm{C}$. is 3.72 metres long and 38 centimetres in diameter, the density of cast iron at $0^{\circ} \mathrm{C}$. being $7^{\prime 207}$?

$$
\begin{gathered}
\mathrm{v}_{25}=\pi \times(\mathrm{Ig})^{2} \times 372 \mathrm{c.c}=\mathrm{v}_{0}\left(\mathrm{r}+\frac{3 \times 25}{88889}\right) \\
=\mathrm{v}_{0} \times \frac{88964}{88889} \\
\therefore \mathrm{v}_{0}=\frac{\pi \times(\mathrm{Ig})^{2} \times 372 \times 88889}{88964}=42 \mathrm{I} 536 \text { c.c. }
\end{gathered}
$$

\therefore mass $=\mathrm{v}_{0} \times d_{0}=421536 \times 7.207=3038010$ grammes $=3038.0$ kilogrammes.
(7.) The density of copper at $0^{\circ} \mathrm{C}$. being 8.878 , what is the mass of a solid copper ball whose diameter at $80^{\circ} \mathrm{C}$. is 16 centimetres? Answer. 18.9623 kilogrammes.
(8.) The volume of a copper ball at $25^{\circ} \mathrm{C}$. is $\mathrm{I}, 620$ cubic centimetres. What will be its volume at $0^{\circ} \mathrm{C}$.?

Answer. 1617.9 c.c.
(9.) The mass of a cast-iron ball is 12 kilogrammes, and the density of cast iron at $\circ^{\circ} \mathrm{C}$. is $7^{\circ 207}$. What will be the diameter of the ball at $30^{\circ} \mathrm{C}$. ?

Let $x=$ radius of the ball in centimetres and d_{t} represent its density at $t^{\circ} \mathrm{C}$. ; then

$$
d_{30}=\frac{7.207}{1+\frac{3 \times 30}{88889}}=\frac{7.207 \times 88889}{88979}
$$

Also $12000=\frac{4}{3} \pi x^{3} \times d_{30}$
$\therefore x^{3}=\frac{12000 \times 3}{4 \pi} \times \frac{88979}{7.207 \times 88889}$
$\therefore x=7.355^{2}$ centimetres
\therefore diameter $=14^{\circ} 71$ centimetres nearly.
(ro.) The density of copper at $0^{\circ} \mathrm{C}$. being 8.878 , what is its density at $30^{\circ} \mathrm{C}$. ?

Since $\mathrm{v}_{0} d_{0}=\mathrm{v}_{t} d_{t}$

$$
\begin{aligned}
& \therefore d_{t}=d_{0} \times \frac{\mathrm{v}_{0}}{\mathrm{v}_{t}}=d_{0} \times \frac{\mathrm{I}}{\mathrm{I}+\frac{3 \times 30}{58309}}=d_{0} \times \frac{58309}{58399} \\
& =8.878 \times \frac{58.309}{58399}=8.864 .
\end{aligned}
$$

(II.) If the density of cast iron at $\circ^{\circ} \mathrm{C}$. be 7799 what quantity of iron will there be in a cubic decimetre at $25^{\circ} \mathrm{C}$. ? Answer. 777924 kilogrammes.
(12.) Assuming that the density of copper at $0^{\circ} \mathrm{C}$. with respect to water at its maximum density ($4^{\circ} \mathrm{C}$.) is 8.88 , what will be their relative densities at 20°. C ? The density
of water at $20^{\circ} \mathrm{C}$. is 9983 , and the coefficient of linear expansion of copper is $\frac{\mathrm{I}}{58309}$.
Density of copper at $20^{\circ} \mathrm{C} .=\frac{8.88 \times 58309}{58369}$
$\therefore \frac{\text { density of copper at } 20^{\circ} \mathrm{C}}{\text { density of water at } 20^{\circ} \mathrm{C} \text {. }}=\frac{8.88 \times 58309}{99^{83} \times 58369}=8.886$.
(13.) The density of brass at $\circ^{\circ} \mathrm{C}$. being 8.383 , and that of water at $60^{\circ} \mathrm{C}$. being 983 , what will be their relative densities at the latter temperature? Answer. 8.4993.
(14.) The density of lead at $0^{\circ} \mathrm{C}$. being 11352 , and that of water at $90^{\circ} \mathrm{C}$. being 965 , find their relative densities at $90^{\circ} \mathrm{C}$. Answer. 11.674.
(15.) The specific gravity of a piece of copper which was weighed in water at $30^{\circ} \mathrm{C}$. was found to be 8%. The density of water at $30^{\circ} \mathrm{C}$. being 996 , what would be the density of this copper at $\circ^{\circ} \mathrm{C}$. ?

Mass of I c.c. of copper at $30^{\circ} \mathrm{C} .=8.9 \times{ }^{\circ} 996$
$=8.8644$ grammes.
Mass of I c.c. of copper at $0^{\circ} \mathrm{C}$. $=8.8644 \times \frac{58399}{58309}$

$$
=8.878 \text { grammes }
$$

(16.) A mass of platinum was weighed in water at $20^{\circ} \mathrm{C}$., and its specific gravity was found to be $23^{\circ} \circ 55$. The density of water at $20^{\circ} \mathrm{C}$. being ' 9983 , and the coefficient of linear expansion of platinum being ${ }_{14285}^{1}$, find its density at $0^{\circ} \mathrm{C}$. Answer. 23.027.
(17.) The density of mercury at $0^{\circ} \mathrm{C}$. being 13.596 , and its coefficient of expansion $\frac{1}{555 \pi}$, what is the volume of 25 kilogrammes of mercury at $100^{\circ} \mathrm{C}$. ?

Answer. 187r.9 c.c.
(18.) What space will be occupied at $84^{\circ} \mathrm{C}$. by a quantity of oil which exactly measures I litre at $0^{\circ} \mathrm{C}$., the coefficient of expansion for $I^{\circ} \mathrm{C}$. being oor ?

$$
\mathrm{v}_{84}=\mathrm{v}_{0}(\mathrm{I}+84 \times \cdot 00 \mathrm{I})=\mathrm{r} \cdot 084 \times \mathrm{v}_{0}=\mathrm{I} 084 \mathrm{c.c} .
$$

(19.) What will be the space occupied at $75^{\circ} \mathrm{C}$. by a quantity of mercury whose bulk at $\circ^{\circ} \mathrm{C}$. is 8 cubic centimetres? Answer. 8.io8 c.c.
(20.) If the density of absolute alcohol at $0^{\circ} \mathrm{C}$. be 793 , what will be its density at $25^{\circ} \mathrm{C}$., the coefficient of expansion being oor ? Answer. '774 nearly.
(21.) What is the density of mercury at $20^{\circ} \mathrm{C}$. if its density at $0^{\circ} \mathrm{C}$. is $13^{\circ} 596$? Answer. 13.547.
(22.) If 25 cubic centimetres of mercury at $13^{\circ} \mathrm{C}$. be heated to $100^{\circ} \mathrm{C}$. what will be the bulk ?

Answer. 25.391 c.c.
(23.) What must be the internal capacity of a glass flask at $0^{\circ} \mathrm{C}$. so that at $25^{\circ} \mathrm{C}$. it may just be able to contain 1,200 grammes of mercury?

> The density of mercury at $25^{\circ} \mathrm{C} .=\frac{13.596}{1+\frac{25}{5550}}$ $$
=\frac{13.596 \times 5550}{5575}
$$

$$
\begin{equation*}
\therefore \mathrm{v}_{25}=\frac{1200 \times 5575}{13.596 \times 5550} \text { c.c. } \tag{I}
\end{equation*}
$$

Also

$$
\begin{equation*}
\mathrm{v}_{0}=\frac{\mathrm{v}_{25}}{1+25^{a}}=\frac{\mathrm{v}_{25}}{1+\frac{3 \times 25}{115607}}=\mathrm{v}_{25} \times \frac{115607}{115682} . \tag{2}
\end{equation*}
$$

And substituting the value of v_{25} from (1) in (2) we get

$$
v_{0}=\frac{115607}{115682} \times \frac{1200 \times 5575}{13.596 \times 5550}=88.6 \text { c.c. nearly. }
$$

(24.) A small glass flask is exactly filled by 62.5 grammes of mercury at $28^{\circ} \mathrm{C}$. What will be the internal capacity of this flask at $0^{\circ} \mathrm{C}$. ? Answer. 4.617 c.c.
(25.) What is the capacity of a glass flask which is exactly filled by 2.3963 kilogrammes of mercury at $15^{\circ} \mathrm{C}$. ? Answer. 176.67 c.c. nearly.
(26.) The internal diameter of a hollow iron ball at $0^{\circ} \mathrm{C}$. is io centimetres. What mass of mercury can the ball contain at $0^{\circ} \mathrm{C}$., and also at $50^{\circ} \mathrm{C}$. ?

Capacity of ball at $0^{\circ} \mathrm{C} .=\frac{4}{3} \pi \times(5)^{3}=523^{\circ} 6$ c.c.
\therefore mass of mercury contained by the ball at $0^{\circ} \mathrm{C}$.

$$
=523.6 \times 13.596=7118.86 \text { grammes. }
$$

Again, the capacity of the ball at $50^{\circ} \mathrm{C}$.

$$
=523.6\left(1+\frac{3 \times 50}{88889}\right)=523.6 \times \frac{89039}{88889} .
$$

The density of mercury at $50^{\circ} \mathrm{C}$.

$$
=\frac{13.596}{1+\frac{50}{5550}}=13.596 \times \frac{5550}{5600}
$$

\therefore mass of mercury contained by the ball at $50^{\circ} \mathrm{C}$.
$=523.6 \times \frac{80039}{88889} \times 13.596 \times \frac{5550}{5600}=7067.21$ granımes.
(27.) What quantity of mercury would this iron ball contain at $100^{\circ} \mathrm{C}$.? Answer. 7016.47 grammes.
(28.) A lump of copper, whose mass is 500 grammes, is suspended in a vessel of water the temperature of which is $16^{\circ} \mathrm{C}$. The density of copper at $0^{\circ} \mathrm{C}$. being 8.878 , and its coefficient of linear expansion 00001715 , while the density of water at $16^{\circ} \mathrm{C}$. is ${ }^{\circ} 998$, find the mass of the water displaced by the copper.

Let $x=$ number of grammes of the water displaced

$$
\begin{aligned}
& m=\text { " } " \Rightarrow \text { copper } \\
& d_{t}=\text { density of copper at } t^{\circ} \mathrm{C} \text {. } \\
& \delta_{t}=" \text { water " }
\end{aligned}
$$

The volume of the copper at $t^{\circ} \mathrm{C} .=\frac{m}{d_{0}}(\mathrm{I}+3 a t)$, and
since this is also the volume of the water displaced its mass

$$
\begin{aligned}
& \text { is }=\frac{m}{d_{0}}(\mathrm{I}+3 a t) \times \delta_{t} \\
& \begin{aligned}
\therefore x=\frac{m}{d_{0}}(\mathrm{I}+3 a t) \times \delta_{t} & =\frac{-300}{8.878}(\mathrm{I}+3 \times 16 \times .000017 \mathrm{I} 5) \times 9989 \\
& =56.3034 \text { grammes. }
\end{aligned}
\end{aligned}
$$

(29.) The density of lead at $0^{\circ} \mathrm{C}$. is Ir_{4} and its coefficient of linear expansion is $350^{\frac{1}{26}}$. What will be the apparent loss of weight in a mass of 5.75 kilogrammes of lead when suspended in water at $18^{\circ} \mathrm{C}$., the density of water at that temperature being 9987 ? Answer. 504.57 grammes.
(30.) A lump of platinum whose mass is 7.5 kilogrammes is suspended in mercury at the temperature of $25^{\circ} \mathrm{C}$. The density of mercury at $0^{\circ} \mathrm{C}$. is $13^{\circ} 6$, and that of platinum is 22 , while the coefficient of cubical expansion of platinum is $3 \frac{1}{3 \frac{1}{700}}$ and that of mercury $\frac{1}{5} 50$. Find the loss of weight.

The volume of platinum at $25^{\circ} \mathrm{C} .=\frac{7500}{22}\left(1+\frac{25}{3^{8} 700}\right)$ $=34 \mathrm{I}^{\circ} 13$ c.c., and this is also the volume at $25^{\circ} \mathrm{C}$. of the mercury displaced. The corresponding volume at $0^{\circ} \mathrm{C}$. would be

$$
\frac{34 \mathrm{r}^{\cdot 1} 13}{1+\frac{25}{555^{\prime}}}=339 \cdot 6 \text { c.c. }
$$

\therefore the mass of mercury displaced $=339.6 \times 13.6=4618.56$ grammes.
Hence the apparent loss of weight $=7500-4618.56$ $=288 \mathrm{r} \cdot 44$ grammes.
(31.) A mass of 220 grammes of platinum was suspended from one arm of a balance and counterpoised, and was then immersed in mercury at $0^{\circ} \mathrm{C}$., when the loss of weight was found to be $135^{\circ} 96$ grammes. The mercury was then slowly heated to $25^{\circ} \mathrm{C}$., and the loss of weight was then
found to be 135.439 grammes. The coefficient of expansion of mercury being $\frac{1}{5 \frac{1}{50}}$, and its density at $0^{\circ} \mathrm{C}$. $1_{3} 3596$, find the coefficient of cubical expansion of the platinum.

The volume of the mercury displaced at $0^{\circ} \mathrm{C} .=\frac{135^{\circ} 9^{6}}{13.596}$ $=\mathrm{roc}$ c.c., and this is equal to the volume of the mass of platinum at $0^{\circ} \mathrm{C}$.

When the temperature rises to $25^{\circ} \mathrm{C}$. the density of the mercury becomes $\frac{13.596}{1+\frac{25}{5550}}=13.535$, and \therefore the volume of the mercury displaced at $25^{\circ} \mathrm{C}$. is $\frac{\mathrm{I} 35^{\circ} 439}{\mathrm{I} .535}=10^{\circ} 00659$ c.c.

But this is also the volume of the mass of platinum at $25^{\circ} \mathrm{C}$., and \therefore if x represent the coefficient of cubical expansion of platinum for $I^{\circ} \mathrm{C}$.

$$
\begin{aligned}
10(1+25 x) & =10.00659 \\
\therefore x & =\frac{.00659}{250}=.0000263 .
\end{aligned}
$$

(32.) The density of a mixture of alcohol and water at $30^{\circ} \mathrm{C}$. is 94 I , and at $0^{\circ} \mathrm{C}$. it is 96 I . Find its mean coefficient of expansion for $\mathrm{I}^{\circ} \mathrm{C}$.

Let $x=$ mean coefficient of expansion for $\mathrm{I}^{\circ} \mathrm{C}$.; then by the method of Example io

$$
\begin{aligned}
& \frac{d_{t}}{d_{0}}=\frac{\mathrm{v}_{0}}{\mathrm{v}_{t}}=\frac{\mathrm{I}}{\mathrm{I}+x t} \\
& \therefore x=\frac{d_{0}-d_{t}}{t \times d_{t}}=\frac{.96 \mathrm{I}-.94 \mathrm{I}}{30 \times \cdot 94 \mathrm{I}}=\frac{.02}{28.23} \\
& =\frac{\mathrm{I}}{\mathrm{I} 4 \mathrm{II}} \text { nearly. }
\end{aligned}
$$

(33.) A hollow platinum ball, whose diameter is 5 centimetres, is suspended from one arm of a balance and just floats in mercury at $0^{\circ} \mathrm{C}$. If the temperature of the room changes to $25^{\circ} \mathrm{C}$. what counterpoise will be required to
prevent the ball from sinking? The density of mercury at $0^{\circ} \mathrm{C}$. is $13^{\circ} 59^{6}$.

The mass of platinum in the ball is equal to the mass of mercury displaced by it at $0^{\circ} \mathrm{C}$. ; that is, to

$$
\frac{4}{3} \pi \times(2.5)^{3} \times 1{ }^{1} \cdot 596=889 \cdot 858 \text { grammes }
$$

The mass of mercury displaced by the ball at $25^{\circ} \mathrm{C}$. is

$$
=\frac{4}{3} \pi \times(2.5)^{3} \times\left(1+\frac{3 \times 25}{114285}\right) \times \frac{13.596}{1+\frac{25}{5550}}=886.448
$$

grammes.
Hence the required counterpoise, which is equal to the excess of the mass of the platinum ball over that of the mercury displaced at $25^{\circ} \mathrm{C}$., is

$$
=889 \cdot 858-886 \cdot 448=3 \cdot 4 \mathrm{I} \text { grammes. }
$$

(34.) A copper vessel at $100^{\circ} \mathrm{C}$. can just hold $1342^{\circ} 4$ grammes of mercury, and at $0^{\circ} \mathrm{C}$. it can just hold 1359.6 grammes. The coefficient of expansion of mercury being $3_{3_{5}^{1} 5}^{1}$, find the coefficient of cubical expansion of copper.

Since the density of mercury at $100^{\circ} \mathrm{C} .=\frac{13.596}{1+\frac{100}{555^{\circ}}}$

$$
=13.355
$$

\therefore capacity of vessel at $100^{\circ} \mathrm{C} .=\frac{1342^{\circ} 4}{13.355}=100^{\circ} 514$ c.c. and the capacity at $0^{\circ} \mathrm{C} .=\frac{\mathrm{I} 359^{\circ} 6}{13.59^{6}}=100$ c.c.
Hence if x be the coefficient of cubical expansion of the copper

$$
\begin{aligned}
100(1+100 x) & =100.514 \\
\therefore x & =\frac{.514}{10000}=\cdot 00005^{14} .
\end{aligned}
$$

(35.) An iron bottle at $15^{\circ} \mathrm{C}$. just holds $18{ }^{\circ} 144$ kilogrammes of mercury. When placed in boiling water it is
found that 222 grammes of mercury escape. Find the coefficient of cubical expansion of iron. Answer. -0000334. (36.) A glass vessel surrounded by melting ice is completely filled by 3.399 kilogrammes of mercury. The vessel is then placed in water which is made to boil, and it is found that $5^{\circ} 5$ grammes of mercury escape. Find the coefficient of cubical expansion of this glass. Answer. -0000259.
(37.) A small glass flask is completely filled at $\circ^{\circ} \mathrm{C}$. by 62.5 grammes of mercury. The temperature is then raised to $100^{\circ} \mathrm{C}$., and the quantity of mercury which then fills the flask is $6 \mathrm{I}^{\circ} 555$ grammes. Find the coefficient of cubical expansion of this glass. Answer. 0000264 nearly.

Note.-This was French glass, with lead in it.
(38.) A B and C D (see fig. 5) are two vertical glass tubes connected at their bases by a U-shaped capillary glass tube befD. Mercury was poured into the apparatus, and when the branch A B was kept in melting ice, while the branch C D was kept at $100^{\circ} \mathrm{C}$., the difference of level of the mercury in the two branches was found to be 6.3 millimetres, while the surface m of the cold mercury was 35 centimetres above the horizontal tube E F. Find the coefficient of absolute expansion of mercury between $\circ^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.
Let $h_{0}=$ height above EF of the surface of the cold mercury
$h_{t}=$ " " " hot "
$d_{0}=$ density of the cold mercury
$d_{t}=$ " ", hot "
$t=$ temperature of the hot mercury
$x=$ mean coefficient of expansion of mercury between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.
Since the two columns of mercury balance each other their pressures per unit of area at E and F must be equal, and therefore

$$
\begin{align*}
h_{0} d_{0} & =h_{t} d_{t} \\
\therefore h_{t} & =\frac{d_{\mathrm{n}}}{d_{t}} \tag{1}
\end{align*}
$$

Also, since the density of any given mass of a substance varies inversely with its volume,

$$
\frac{d_{0}}{d_{t}}=1+x t
$$

From equations I and 2 we obtain

$$
\begin{gathered}
\frac{h_{t}}{h_{0}}=\mathrm{x}+x t \\
\therefore x=\frac{h_{t}-h_{0}}{h_{0} \times t}=\frac{\cdot 63}{35 \times 100}=\frac{1}{555^{\circ}}
\end{gathered}
$$

N.B. This is known as Dulong and Petit's method.
(39.) In another experiment of the same kind the height of the mercury column at $0^{\circ} \mathrm{C}$. was 2753 centimetres, and the difference of level of the two surfaces was 10.15 millimetres, while the temperature of the hot mercury was 200° C. Find from this experiment the mean coefficient of expansion of mercury between $0^{\circ} \mathrm{C}$. and $200^{\circ} \mathrm{C}$. Answer. $\frac{1}{5+25}$ nearly.
(40.) Determine the mean value of the coefficient of absolute expansion of mercury between $0^{\circ} \mathrm{C}$. and $300^{\circ} \mathrm{C}$. from an experiment in which the height of the cold column was $25^{\circ} 7^{2}$ centimetres, and the difference of level of the surfaces of mercury in the two tubes was $14^{\circ} 56$ millimetres while the temperature of the hot tube was kept at $300^{\circ} \mathrm{C}$. Answer. $\frac{1}{2} \frac{1}{295}$ nearly.
(41.) In another experiment the heights of the two columns of mercury, as determined by a cathetometer, were 22.2 and 22.6 centimetres respectively, while their temperatures were $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. Find the mean coefficient of expansion.

Answer. $5 \frac{1}{50}$.
Note.-A serious objection to this method is that the difference of level of the mercury in the two tubes is necessarily very small, and even a small error in the observed value produces a considerable error in the result.
(42.) One of the tubes in an apparatus similar to that of Dulong and Petit contained a column of water 155 centi-
metres high, and the other tube contained a column of another liquid 317 centimetres high. At the temperature of $10^{\circ} \mathrm{C}$. these two columns balanced each other.

Find (I) what was the density of this second liquid, that of water at $10^{\circ} \mathrm{C}$. being 99974 , and (2) calculate its coefficient of expansion from the fact that when the temperature of its tube was raised to $25^{\circ} \mathrm{C}$. the height of the column was raised to $318{ }^{\circ}$ centimetres, the temperature of the water remaining the same as before.
(r) Let $x=$ density of the second liquid ; then by Example 38

$$
\begin{gathered}
317 \times x=155 \times 99974 \\
\therefore x=\frac{155 \times .99974}{317}=4888 \text { nearly. }
\end{gathered}
$$

(2) Let $y=$ mean coefficient of expansion of the second liquid for $\mathrm{I}^{\circ} \mathrm{C}$. ; then

$$
1+15 y=\frac{218 \cdot 1}{317} \therefore y=\frac{1 \cdot 1}{317 \times 15}=\frac{I}{43^{23}} \text { nearly. }
$$

(43.) The density of mercury at $68^{\circ} \mathrm{F}$., with respect to water at the same temperature, is found by experiment to be 13.568 , and at $212^{\circ} \mathrm{F}$. it is $13^{\circ} 93^{2}$. If the expansion of mercury between these points be $\frac{1}{69}$ of its volume at the lower temperature, find that of water between the same points.

Let v_{t} represent the volume of a given mass of mercury at $t^{\circ} \mathrm{F}$.
v_{t}^{\prime} represent the volume of a given mass of water at $t^{\circ} \mathrm{F}$.
and let x represent the expansion of unit volume of water between the two given temperatures.

Then, as in equation 1 of Example 38, we have

$$
\begin{aligned}
\mathrm{v}_{212} & =\mathrm{v}_{68} \times \frac{70}{70} \\
\text { and } \mathrm{v}^{\prime}{ }_{212} & =\mathrm{v}_{68}^{\prime} \times(\mathrm{x}+x) .
\end{aligned}
$$

But by the conditions of the problem

$$
\frac{\mathrm{v}_{68}^{\prime}}{\mathrm{v}_{68}}=13^{\circ} 568 \text {, and } \frac{\mathrm{v}^{\prime}{ }_{912}}{\mathrm{v}_{212}}=13^{.932} \text {; }
$$

therefore $\mathrm{I}+x=\frac{\mathrm{v}^{\prime}{ }_{919}}{\mathrm{v}_{68}^{\prime}}=\frac{1.3 .93^{2}}{13.568} \times \frac{70}{69}=1.0417$

$$
\therefore x=0417 .
$$

(44.) What fraction of its volume at $60^{\circ} \mathrm{F}$. is the expansion of a substance for each additional degree of temperature if it expands the cooo6th part of the volume which it has at $32^{\circ} \mathrm{F}$. for each degree above $32^{\circ} \mathrm{F}$. ?

Using q notation similar to that employed in the last example,

$$
\begin{gathered}
\frac{\bar{v}_{60}}{v_{32}}=1+28 \times 0006=1 \cdot 0168 \\
\text { and } \frac{\mathrm{v}_{6 n+t}}{\mathrm{v}_{32}}=1+(28+t) \times 0006
\end{gathered}
$$

Hence $\frac{\delta v}{v_{60}}=\frac{v_{6 n+t}-v_{60}}{v_{60}}=\frac{.0006 \times t}{1.0168}=.00059 \times t$
$=.00059$ when $t=1^{\circ} \mathrm{F}$.

RELATIVE EXPANSION.

(I.) The graduations of a glass measure are correct at $0^{\circ} \mathrm{C}$., and at $15^{\circ} \mathrm{C}$. it appears to contain 150 cubic centimetres of mercury. What quantity does it actually contain?

Let $m=$ the number of grammes of mercury, then its volume at $15^{\circ} \mathrm{C}$. is

Again,

$$
\frac{m}{13^{.6}}\left(1+\frac{15}{5550}\right)=\frac{m \times 5.565}{13^{.6} \times 5550} \text { c. } \dot{c} .
$$

150 c.c. of glass at $0^{\circ} \mathrm{C}$. become $150\left(1+\frac{3 \times 15}{115607}\right)$ c.c.

$$
\text { at } 15^{\circ} \mathrm{C} .
$$

$$
\therefore \frac{m \times 5565}{13.6 \times 5550}=150 \times \frac{115652}{115607}
$$

Hence $m=2035^{\circ} 3$ grammes.
(2.) At the temperature of $23^{\circ} \mathrm{C}$. a glass flask is exactly filled by 5,325 grammes of mercury. What would be its capacity at $0^{\circ} \mathrm{C}$. ?

Let $\mathrm{v}_{t}=$ capacity of flask in c.c.'s at $t^{\circ} \mathrm{C}$.
$\kappa=$ coefficient of cubical expansion of the glass.
The volume of 5,325 grammes of mercury at $23^{\circ} \mathrm{C}$. is

$$
\mathrm{v}_{23}=\frac{5325}{13 \cdot 596}\left(1+\frac{23}{5550}\right)=393 \cdot 28 \text { c.c. }
$$

and since the capacity of the flask at $\circ^{\circ} \mathrm{C}$. is

$$
\begin{gathered}
v_{0}=\frac{v_{23}}{1+\kappa t}=v_{23} \times \frac{115607}{115676} \text {, since } \kappa=\frac{3}{115607}, \\
\therefore v_{0}=393^{.28} \times \frac{115607}{115676}=393^{\circ} 048 \text { c.c.'s. }
\end{gathered}
$$

(3.) At the temperature of $14^{\circ} \mathrm{C}$. a glass flask just holds 2,730 grammes of mercury. How much mercury will escape if the temperature be steadily raised to $100^{\circ} \mathrm{C}$.?

$$
\begin{gathered}
\text { In this case } v_{14}=\frac{2730}{13.596} \times \frac{5564}{5550}=201.3 \text { c.c.'s. } \\
\mathrm{v}_{100}=\mathrm{v}_{14} \times \frac{115907}{115607}=201.823 \text { c.c.'s. }
\end{gathered}
$$

The mass of mercury which the flask can hold at 100° C. is therefore

$$
201.823 \times 13.596 \times \frac{555^{0}}{5650}=2695.4 \text { grammes, }
$$

and the quantity of mercury which escapes is therefore

$$
2730-2695^{\circ} 4=34^{\circ} 6 \text { grammes. }
$$

(4.) A glass specific-gravity bottle can just contain 565 grammes of mercury at $0^{\circ} \mathrm{C}$. The coefficient of linear expansion of the glass for $\mathrm{I}^{\circ} \mathrm{C}$. being $\frac{111^{1}}{}$, to what temperature must the bottle and its contents be raised so that 3 grammes of mercury may escape?

Let $x^{\circ} \mathrm{C}$. $=$ required temperature ; then with the usual notation we have

$$
\begin{equation*}
v_{x}=\frac{565}{13.596}\left(1+\frac{3 x}{116100}\right) \tag{I}
\end{equation*}
$$

The mass of mercury remaining in the bottle at $x^{\circ} \mathrm{C}$. is 562 grammes, and the volume of this at $x^{\circ} \mathrm{C}$. is

$$
\begin{equation*}
\mathrm{v}_{x}=\frac{562}{13.59^{6}}\left(\mathrm{r}+\frac{x}{555^{\circ}}\right) \tag{2}
\end{equation*}
$$

From equations 1 and 2 we have

$$
\begin{aligned}
& \frac{565}{13596}\left(1+\frac{3 x}{116100}\right)=\frac{562}{13.596}\left(1+\frac{x}{5550}\right) \\
& \therefore x=\frac{3 \times 5.50 \times 38700}{18613650}=34^{.62^{\circ}} \text { C. nearly. }
\end{aligned}
$$

(5.) A cylindrical glass tube 75 centimetres long, and of one centimetre internal diameter, is closed at one end and open at the other. At the temperature of the room, which is $15^{\circ} \mathrm{C}$., it contains a column of mercury $74^{\circ} 5$ centimetres long. By how much must the temperature rise so that the mercury may just fill the whole tube?

The quantity of mercury in the tube at $x^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& =\frac{\pi}{4} \times 74^{\circ} 5 \times 13.596 \times \frac{55.50}{5565} \text { grammes } \\
& =793.39 \text { grammes } .
\end{aligned}
$$

The volume of this mercury in the tube at $x^{\circ} \mathrm{C}$.

$$
\begin{equation*}
=\frac{793.39}{13.596} \times\left(1+\frac{x}{555^{\circ}}\right) \text { c.c. } \tag{I}
\end{equation*}
$$

The interior capacity of the tube at $x^{\circ} \mathrm{C}$. is

$$
\begin{equation*}
\frac{\pi}{4} \times 74.5 \times \frac{r r 5607+x}{115652}, \tag{2}
\end{equation*}
$$

and since the mercury just fills the tube at $x^{\circ} \mathrm{C}$. we have from (1) and (2)

$$
\begin{gathered}
\frac{115607+x}{555^{\circ}+x}=\frac{11565^{2}}{5565} \\
\text { whence } x=\frac{266 \cdot 9}{19^{\prime} 782}=13.49^{\circ} \mathrm{C}
\end{gathered}
$$

(6.) A vessel is completely filled with mercury, and $57^{\circ} 5$ grammes of iron are dropped in, the temperature of the room being i $7^{\circ} \mathrm{C}$. The density of iron at $0^{\circ} \mathrm{C}$. being 7°, , and that of mercury 13.596 , what quantity of mercury will be expelled from the vessel ?

The volume of the iron at $17^{\circ} \mathrm{C}$.

$$
=\frac{57.5}{7 \cdot 2}\left(1+\frac{3 \times 17}{88889}\right)=7.99 \text { c.c. }
$$

But the volume of the mercury expelled is equal to that of the iron at $17^{\circ} \mathrm{C}$., and therefore the quantity of mercury expelled is

$$
7.99 \times 13.596 \times \frac{5550}{5567}=108.31 \text { grammes. }
$$

(7.) If the temperature of the room had been $25^{\circ} \mathrm{C}$. what would have been the quantity of mercury displaced? Answer. 108•18 grammes approximately.
(8.) If the quantity of iron had been I kilogramme, and the temperature of the room $20^{\circ} \mathrm{C}$., what would have been the quantity of mercury expelled ?

Answer. $1887 \cdot 16$ grammes approximately.
(9.) A glass flask at the temperature of melting ice contains exactly 220 grammes of water. It is then heated up to $80^{\circ} \mathrm{C}$., and $5^{\circ} 833$ grammes of water escape. The co-efficient of cubical expansion of the glass for $r^{\circ} \mathrm{C}$. being ${ }_{38 \frac{1}{5} 36}$, find the mean coefficient of expansion of water for $1^{\circ} \mathrm{C}$. between $0^{\circ} \mathrm{C}$. and $80^{\circ} \mathrm{C}$.

Let x be the mean coefficient of expansion of water for
$1^{\circ} \mathrm{C}$. between $0^{\circ} \mathrm{C}$. and $80^{\circ} \mathrm{C}$., and let d_{t} be the density of water at $t^{\circ} \mathrm{C}$.

The capacity of the flask at $0^{\circ} \mathrm{C} .=\frac{220}{d_{0}}$ c.c.

$$
\begin{aligned}
" \quad & " \quad 80^{\circ} \mathrm{C} .=\frac{220}{d_{0}} \times\left(\mathrm{I}+\frac{80}{3853^{6}}\right) \\
= & \frac{220^{\circ} 4^{6}}{d_{0}} \text { c.c. }
\end{aligned}
$$

But $d_{t}=\frac{d_{0}}{1+x t}$; therefore the water which just filled the
flask at $0^{\circ} \mathrm{C}$. has at $80^{\circ} \mathrm{C}$. a volume $=\frac{220}{d_{0}}(1+80 x)$; therefore the volume of water which escapes is

$$
\begin{align*}
& \frac{220}{d_{0}}(1+80 x)-\frac{220.46}{d_{0}} \\
= & \frac{17600 x-46}{d_{0}} \text { c.c. } \tag{1}
\end{align*}
$$

But this quantity is 5.833 grammes, and its volume at $80^{\circ} \mathrm{C}$. is

$$
\begin{equation*}
=\frac{5 \cdot 833}{d_{80}}=\frac{5 \cdot 833}{d_{0}}(1+80 x) \text {. } \tag{2}
\end{equation*}
$$

From (1) and (2) we have therefore $17600 x-46=5.833(1+80 x)$, whence $x={ }^{\circ} 000367$ approximately.
(10.) A glass vessel with a perforated stopper contained a small piece of iron weighing 77 grammes, and was filled up at $0^{\circ} \mathrm{C}$. with $\mathbf{1} 35$ grammes of mercury. The vessel was then placed in an oil bath and heated up to $115^{\circ} \mathrm{C}$., and $2^{.45}$ 8 grammes of mercury escaped. Calculate from the data of this experiment the coefficient of cubical expansion of iron.

Assuming that the density of iron at $0^{\circ} \mathrm{C}$. is 7.78 , and that of mercury $\mathbf{1} 3.59$, then
volume of the mercury at $0^{\circ} \mathrm{C} .=\frac{135}{\mathrm{I} 3.59}=9.933 \mathrm{~S}$ c.c.

$$
" \quad n \quad \text { iron } \quad " \quad=\frac{77}{7.78}=9.8972 \text { c.c. }
$$

But the capacity of the glass vessel at any temperature must be equal to the sum of the volumes of the substances which fill it , and therefore
capacity of the flask at $0^{\circ} \mathrm{C}$.

$$
=9.9338+9.8972=19.831 \text { c.c. }
$$

capacity of the flask at $115^{\circ} \mathrm{C}$.
$=19.83 \mathrm{I}\left(\mathrm{I}+\frac{115}{3853^{6}}\right)=19.890$ c.c.
Also the mass of the mercury in flask at $\mathrm{Ir} 5^{\circ} \mathrm{C}$.

$$
=135-2.458=132.542 \text { granımes, }
$$

and the volume of the mercury in flask at $115^{\circ} \mathrm{C}$.

$$
=\frac{132 \cdot 542}{13.59}\left(\mathrm{I}+\frac{115}{5550}\right)=9.955 \text { c.c. }
$$

But the volume of the iron at $\mathrm{II} 5^{\circ} \mathrm{C} .=\frac{77}{777^{8}}(\mathrm{I}+\mathrm{Ir} 5 x)$ c.c.; therefore the sum of the volumes of the mercury and iron which fill the flask at $115^{\circ} \mathrm{C}$. is

$$
\begin{equation*}
9.897^{2}(1+115 x)+9.955 \text { cubic centimetres } \tag{2}
\end{equation*}
$$

Equating the values from (1) and (2), we have

$$
9.8972(1+115 x)+9.955=19.890
$$

and from this equation we get

$$
x=\frac{1}{30110} .
$$

(ir.) Another glass flask with a perforated stopper contained roo grammes of iron, and when placed in melting ice was filled up with 120 grammes of mercury. The temperature was then raised to $100^{\circ} \mathrm{C}$., and it was found that $\mathrm{I}^{\prime} 974$ gramme of mercury escaped. Taking the densities of iron and mercury the same as in the last example, find the coefficient of cubical expansion of this specimen of iron.

Answer. $5^{\frac{1}{9}} 9 \mathrm{~T}$.
(I2.) A specific gravity bottle with a perforated stopper was filled up at $\circ^{\circ} \mathrm{C}$. with $\mathrm{I}_{3} 8$ grammes of mercury, and after being placed in an oil bath and heated to $150^{\circ} \mathrm{C}$. it
was found that $3^{\cdot 1} 13$ grammes of mercury had escaped. Having given that the coefficient of absolute expansion of mercury is $\frac{3 \delta^{3}}{50}$, find that of the glass.

Answer. -00002 13 nearly. (See also Example 34, p. 33.)
(13.) A glass flask is filled at $0^{\circ} \mathrm{C}$. with 620 grammes of mercury. It is then heated to $100^{\circ} \mathrm{C}$., and on being weighed again it is found to contain only 61061 grammes of mercury. The density of mercury at $0^{\circ} \mathrm{C}$. being $\mathbf{1}^{\circ} 596$, and its mean coefficient of expansion for $1^{\circ} \mathrm{C}$. being $5 \bar{\delta}^{\frac{1}{5} 0}$, find the coefficient of expansion of the glass.

Answer. $3 \frac{1}{8459}$ approximately.
(14.) A glass bottle with a perforated stopper was filled with 124 grammes of water at $0^{\circ} \mathrm{C}$., and after being heated to $100^{\circ} \mathrm{C}$. it was found that 5.75 grammes of water had escaped. The coefficient of cubical expansion of this glass was known to be $\frac{1}{38+60}$. Find from this experiment the expansion of unit volume of water between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.

Answer. By the method of Example 9 we find that the expansion of unit volume is 05136 .
Note.-The student will notice the value of the determination, by Dulong and Petit's or Regnault's method, of the absolute expansion of mercury independently of that of the containing vessel ; for, knowing the absolute expansion of mercury, we can find the absolute expansion of any glass vessel, and then by observing the apparent expansion of any liquid which fills that vessel we can determine the absolute cubical expansion of the liquid after correcting for the expansion of the vessel.
(15.) A glass vessel which had a narrow neck with a mark on it was filled up to this mark at $0^{\circ} \mathrm{C}$. with $22^{\circ} 37$ grammes of benzol. The vessel was then heated to $50^{\circ} \mathrm{C}$., and all the liquid which passed above the mark was removed, and on weighing again it was found that the quantity of benzol remaining in the flask was 21.08 grammes. The co-
efficient of cubical expansion of the glass being $\frac{1}{38536}$, find the coefficient of expansion of the benzol.

Answer. 00118 nearly.
(16.) A piece of glass tube was closed at one end and drawn out at the other to a capillary point. The quantity of water which just filled it at $0^{\circ} \mathrm{C}$. was 172.5 grammes. The apparatus was then heated to $100^{\circ} \mathrm{C}$., and on weighing again it was found that 8.346 grammes of water had been expelled. The coefficient of expansion of the glass being ${ }_{38 \frac{1}{3} 36}^{1}$, calculate the expansion of unit volume of water between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.

Answer. 05357.
(17.) At $0^{\circ} \mathrm{C}$. a weight-thermometer was just filled by $25^{1} 5$ grammes of mercury. On weighing the thermometer after its temperature had been raised to $100^{\circ} \mathrm{C}$. it was found to contain only $247^{\circ} 691$ grammes of mercury. The coefficient of cubical expansion of the glass being 000026 , calculate from the data of this experiment the coefficient of absolute expansion of the mercury. Answer. $\frac{1}{3550^{\circ}}$
(18.) What would be the value of the coefficient of apparent expansion of mercury in this glass?

The apparent expansion is the difference between the actual expansion of the mercury and of the glass, and is $\therefore \frac{1}{6493}$ nearly.
(19.) An iron bottle contains a piece of platinum and is filled up at $0^{\circ} \mathrm{C}$. with mercury. What must be the ratio of the quantities of mercury and platinum so that there may be no apparent expansion when the bottle is heated up to $100^{\circ} \mathrm{C}$.?

The following 'constants' are to be used :-
Coefficient of cubical expansion of platinum for $I^{\circ} \mathrm{C} .=\frac{1}{37 \frac{1}{7} 00}$

Let $m=$ required mass of the platinum in grammes
$m^{\prime}=$ " mercury "
then the bulk of the platinum at $0^{\circ} \mathrm{C} .=\frac{m}{21}$ c.c.

$$
" \quad \text { mercury } \quad "=\frac{m^{\prime}}{13 \cdot 6} \text { c.c. }
$$

and therefore the capacity of the iron bottle $=\left(\frac{m}{21}+\frac{m^{\prime}}{13 \cdot 6}\right)$ c.c. When the temperature rises from $0^{\circ} \mathrm{C}$. to $t^{\circ} \mathrm{C}$. the sum of the volumes of the platinum and mercury will become

$$
\begin{equation*}
\frac{m}{21}\left(1+\frac{t}{37700}\right)+\frac{m^{\prime}}{13.6}\left(1+\frac{t}{5550}\right) \tag{I}
\end{equation*}
$$

and the capacity of the iron bottle will be

$$
\begin{equation*}
\left(\frac{m}{21}+\frac{m^{\prime}}{13^{\prime 6}}\right) \times\left(1+\frac{t}{28200}\right) \tag{2}
\end{equation*}
$$

and if there is no apparent expansion these two expressions must be equal ; therefore, equating (1) and (2), we get

$$
\left(\frac{m}{21}+\frac{m^{\prime}}{13.6}\right) \times \frac{1}{28200}=\frac{m}{21 \times 37700}+\frac{m^{\prime}}{13.6 \times 555^{\circ}}
$$ whence $\frac{m}{m^{\prime}}=\frac{21 \times 2265 \times 377}{13.6 \times 555 \times 95}=25$ approximately.

THERMOMETERS.

(r.) A graduated glass tube with a cylindrical bore contains a thread of mercury which occupies 150 subdivisions at $0^{\circ} \mathrm{C}$. What number of subdivisions will it occupy at $150^{\circ} \mathrm{C}$?

Let $x=$ required number of subdivisions
$a=$ length of i subdivision at $0^{\circ} \mathrm{C}$.
$k=$ coefficient of linear expansion of the glass ;
then $a(\mathrm{I}+\kappa t)=$ length of a subdivision at $t^{\circ} \mathrm{C}$.
and $x a(\mathrm{I}+\kappa t)=, \quad$, mercury thread at $\rho^{\circ} \mathrm{C}$. ; and if $r=$ radius of the bore at $0^{\circ} \mathrm{C}$., then the capacity of x subdivisions of the tube at $t^{\circ} \mathrm{C}$. is $\pi r^{2} x a\left(\mathrm{I}+3^{\kappa} t\right)$.

But this being the space occupied by the mercury at the temperature $t^{\circ} \mathrm{C}$. is $\pi r^{2} \times 1_{50} a\left(1+\frac{t}{555^{\circ}}\right)$, and \therefore substituting the values for t and κ we have

$$
\begin{aligned}
& \qquad x\left(1+\frac{3 \times 150}{115607}\right)=1_{50}\left(1+\frac{150}{555^{\circ}}\right) \\
& \text { whence } x=\frac{150 \times 5700 \times 115607}{5550 \times 116057}={ }_{153} .46 \text { approx. }
\end{aligned}
$$

The result may be arrived at by a much shorter method as follows:-
Let E_{m} be the expansion of unit volume of mercury for $t^{\circ} \mathrm{C}$.
$\mathrm{E}_{g} \quad$ " " " glass
then if E_{m} and E_{g} were equal x would always be 150 , but, as they are not equal,

$$
\frac{x}{1_{50}}=\frac{\mathrm{E}_{m}}{\mathrm{E}_{g}}=\frac{\mathrm{I}+\frac{\mathrm{I} 50}{\mathrm{5550}}}{\mathrm{I}+\frac{3 \times 160}{115607}}=\frac{5700 \times 115607}{5550 \times 116057}
$$

$$
\therefore x=153.46 \text { nearly. }
$$

(2.) What number of subdivisions would the mercury occupy in this tube at $100^{\circ} \mathrm{C}$.? Answer. 152.3 I nearly.
(3.) A piece of empty thermometer tube weighed 14.5 I grammes. A thread of mercury which occupied 43 millimetres of the bore was drawn up into the tube, and the whole weighed 14.5215 grammes. The temperature of the room being $12^{\circ} \mathrm{C}$., find the diameter of the bore of this tube.

Let x be the dianeter of the bore in centimetres d be the density of mercury at $12^{\circ} \mathrm{C}$.
The quantity of mercury which fills a length of 43 millimetres of the tube at $12^{\circ} \mathrm{C}$. is $14^{\circ} 5^{215-14.51}=\cdot 0115$ of a gramme.

$$
\begin{align*}
& \text { Then } \pi \times\left(\frac{x}{2}\right)^{2} \times 4.3 \times d=\text { OII } 5 \\
& \therefore x^{2}=\frac{4}{\pi} \times \frac{0115}{43} \times \frac{5562}{13596 \times 5550} . \tag{r}
\end{align*}
$$

$$
\text { since } d=\frac{13.596}{1+\frac{12}{5550}}=\frac{13.596 \times 553^{\circ}}{5562}
$$

From (I) we get, by extracting the square root, $x={ }^{\circ}$ or 58 centimetre nearly.
(4.) Two grammes was the difference in weight of a glass tube when empty and when containing a thread of mercury which occupied a length of 15.5 centimetres. The temperature of the room being $15^{\circ} \mathrm{C}$., find the diameter of the tube.

Answer. 'II centimetre nearly.
(5.) The bore of the tube of a Centigrade thermometer had a diameter of $\cdot 2$ of a millimetre at $0^{\circ} \mathrm{C}$., and the inside diameter of the spherical bulb was 9 millimetres. At $0^{\circ} \mathrm{C}$. the mercury just filled the bulb up to the bottom of the tube. Assuming that the relative expansion of mercury in glass is $\frac{1}{645 \pi}$, find the length of a Centigrade degree on this thermometer.

Let $x=$ number of millimetres in one Centigrade degree; then the bulk of the mercury contained in this length of the tube at $o^{\circ} \mathrm{C}$. is $\pi \times(\cdot \mathrm{I})^{2} \times x$ cubic millimetres.

But the bulk of the mercury contained in the bulb at $0^{\circ} \mathrm{C}$.is ${ }_{3}^{4} \pi \times(4.5)^{3}$ cubic millimetres, and, since the volume of the mercury which occupies one subdivision of the tube is equal to the apparent expansion of the mercury in the bulb for $I^{\circ} \mathrm{C}$., we have

$$
\frac{4}{3} \pi \times(4 \cdot 5)^{3} \times \frac{1}{6480}=\pi \times(\cdot 1)^{2} \times x
$$

From this we get $x=\frac{4 \times(4.5)^{3}}{3 \times 6480 \times(\cdot 1)^{2}}$
$=\mathrm{r} .875=\mathrm{r} 9$ millimetre nearly.
(6.) Two mercurial thermometers were made of the same kind of glass. The diameter of the interior of the bulb of one of them was 7.5 millimetres, and that of the bore of its tube was 25 of a millimetre. The diameter of the interior
of the bulb of the other thermometer was 6.2 millimetres, and that of the bore of its tube was ${ }^{1} 5$ of a millimetre. Compare the lengths of one Centigrade degree on the scales of these two thermometers.

Answer. $\frac{\text { Length of a degree on second }}{\text { length of a degree on first }}=1.569$.
(7.) The capillary tube of a thermometer stem was divided into a series of equal parts whose capacity at $0^{\circ} \mathrm{C}$. was or of a cubic millimetre. The interior length of a cylindrical glass bulb which was to be fused to the end of this tube was 2.5 centimetres. What must have been the interior diameter of this cylindrical bulb so that each subdivision of the tube should correspond to $\frac{1}{10}$ th of a Centigrade degree?

Let x be the radius of the interior of the bulb in millimetres ; then
the bulk of the mercury which fills the bulb at $0^{\circ} \mathrm{C}$. $=\pi \times x^{2} \times 25$ cubic millimetres
the bulk of the mercury which fills 10 subdivisions of the tube $=\cdot$ I cubic millimetre.
But this is the apparent expansion for $\mathrm{I}^{\circ} \mathrm{C}$. of the mercury which fills the bulb at $\circ^{\circ} \mathrm{C}$. and

$$
\begin{gathered}
\therefore \frac{\pi x^{2} \times 25}{6480}=1 \\
\text { whence } x=2.872 \text { millimetres }
\end{gathered}
$$

\therefore diameter required is $5^{\circ} 74$ millimetres nearly.
(8.) A glass tube was carefully graduated into 250 divisions of equal capacity. The difference between the weights of the empty tube and of the tube when containing a thread of mercury which occupied 33 subdivisions of the tube was 5.3^{2} centigrammes. What must be the interior diameter of a spherical glass bulb which would have to be attached to the end of the tube so that the 250 divisions should represent 200 Centigrade degrees?

Answer. 2.638 centimetres.
(9.) Suppose that we have to construct a mercury thermometer by means of which we can measure temperatures of
$+200^{\circ} \mathrm{C}$. and of $-40^{\circ} \mathrm{C}$. What must be the ratio of the capacity of the interior of the bulb to that of the rest of the tube ?

Let $z=$ capacity of one subdivision of the tube.

$$
n v=\quad \# \quad \text { the bulb. }
$$

Since the range is to be from $-40^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$, the relative expansion of the mercury in the bulb for a change of temperature of $240^{\circ} \mathrm{C}$. must be 240 v , and

$$
\begin{aligned}
\therefore n v \times \frac{240}{6480} & =240 v ; \\
\therefore n v & =6480 ; \\
\therefore \frac{\text { capacity of bulb }}{\text { capacity of tube }} & =\frac{6480}{240}=\frac{27}{I} .
\end{aligned}
$$

(ro.) A cylindrical glass tube of $\cdot 1$ millimetre internal diameter was attached to a cylindrical glass bulb one centimetre long and one centimetre inside diameter. The tube was divided into millimetres, and at $0^{\circ} \mathrm{C}$. the mercury which was introduced filled the bulb and a length of 3 millimetres of the tube. By what amount would the mercury rise in the tube for each increment of $I^{\circ} \mathrm{C}$.?

Answer. $15 \% 4$ millimetres approximately.
(ii.) An empty thermometer with a spherical bulb weighs 15 grammes. From its junction with the bulb the tube is graduated in millimetres, and is assumed to be of uniform cylindrical bore. Some mercury is introduced and at $0^{\circ} \mathrm{C}$. just fills the bulb and 15 subdivisions of the tube. The weight of the tube and its contents is 16.53 grammes. Some more mercury is introduced, and when the instrument is placed in melting ice, the top of the mercury is at the 2 Ist subdivision, and the weight of the whole is 16.583 grammes. What is the capacity of the bulb and that of each subdivision of the tube at $0^{\circ} \mathrm{C}$. ?
Let $m_{1}=$ mass of the empty thermometer in grammes.
$m_{2}=\quad$ " thermometer + first quantity of mercury

Let $m_{3}=$ mass of the thermometer + final quantity of mercury $x=$ capacity of the bulb in cubic centimetres.
$y=\quad, \quad$ each subdivision of the tube in c.c. $n=$ graduation corresponding to extremity of mercury in first case.
$n^{\prime}=$ graduation corresponding to extremity of mercury in second case.

whence $y=\frac{m_{3}-m_{2}}{13.596\left(n^{\prime}-n\right)}=\frac{16.583-16.53}{13.596(21-15)}=\frac{.053}{13.596 \times 6}$
$={ }^{\circ} 0006497$ cub. centim. or ${ }^{6} 6$ cub. millim. nearly.
Substituting this value of y in the first equation, we get $x=' 10279$ c.c. nearly, or $102 \cdot 79$ cub. millim. nearly.

Note.-Problems are sometimes set in which it is stated that the first quantity of mercury introduced just fills the bulb to the zero of the scale. It is practically impossible to insure doing this. The above method of procedure gets over the difficulty.
(12.) A mercurial thermometer is partially immersed in a liquid whose temperature is required, the immersion being up to the 33 rd degree of the scale, while the whole mercury column indicates $73^{\circ} \mathrm{C}$. Find the true temperature of the liquid, taking the coefficient of the apparent expansion of mercury in glass at $\frac{1}{6480}$, and the temperature of the air at $15^{\circ} \mathrm{C}$.

When the whole of the mercurial column is not immersed in the liquid under examination, but a portion of it is in a medium at a lower temperature, it is obvious that the indicated temperature of the liquid must be below the true temperature.

Let $x=$ true temperature of the liquid in Centigrade degrees.
$\mathbf{T}=$ the temperature as indicated by the top of the mercury column.

Let $v=$ the number of degrees of the mercury column exposed to the air.
$\theta=$ temperature of the air, which is assumed to be that of the exposed portion of the mercurial column.
If the thermometer indicated the actual temperature of the liquid, the temperature of the exposed part of the stem would be x and not θ, and at this temperature the length of the exposed portion would be

$$
n \times \frac{1+\frac{x}{6480}}{1+\frac{\theta}{6480}}
$$

and therefore the corrected length of the exposed portion would be greater than the actual length by a quantity

$$
n\left\{\frac{\mathrm{I}+\frac{x}{6480}}{\mathrm{I}+\frac{\theta}{6480}}-\mathrm{I}\right\}=\frac{n(x-\theta)}{6480+\theta}
$$

and therefore the true temperature of the liquid is given by the equation

$$
x=\mathrm{T}+\frac{n(x-\theta)}{6480+\theta}
$$

Since θ is generally very small compared with 6480 , it is usual to take the approximate formula

$$
x=\mathrm{T}+\frac{n(x-\theta)}{6480}
$$

In the present case $\mathrm{T}=73, n=40$, and $\theta=15^{\circ} \mathrm{C}$. Substituting these values, we get

$$
x=73.36^{\circ} \mathrm{C} . \text { nearly } .
$$

(13.) The bulb of a mercurial thermometer and the stem up to the zero of the scale are immersed in water at $100^{\circ} \mathrm{C}$., while the remainder of the stem is exposed to the air
at the temperature $10^{\circ} \mathrm{C}$. What will be the reading of this thermometer?

Using the approximate formula of the last example, we have

$$
\begin{gathered}
x=100, n=\mathrm{T}, \theta=10 ; \\
\therefore 100=\mathrm{T}+\frac{\mathrm{T} \times 90}{6480} ; \\
\therefore \mathrm{T}=98.63^{\circ} \mathrm{C} .
\end{gathered}
$$

(14.) The bulb and the tube of a thermometer up to $+22^{\circ} \mathrm{C}$. are immersed in hot water, and the temperature as indicated by the thermometer is $67^{\circ} \mathrm{C}$., while the temperature of the air is $20^{\circ} \mathrm{C}$. What is the true temperature of the hot water? Answer. $67.33^{\circ} \mathrm{C}$. nearly.
(15.) The temperature of the air in a laboratory was $13^{\circ} \mathrm{C}$., and the indicated temperature of a hot liquid was $123^{\circ} \mathrm{C}$., the tube of the thermometer being immersed up to the 10° mark. What was the true temperature of the liquid? Answer. $124.95^{\circ} \mathrm{C}$.
(16.) What would have been the indicated temperature if the thermometer had been immersed in the liquid up to the 30° mark? Answer. $124.43^{\circ} \mathrm{C}$.
(I 7.) There is half a cubic inch of mercury in a thermometer at $32^{\circ} \mathrm{F}$., and when the temperature rises to $92^{\circ} \mathrm{F}$. the mercury ascends 4 inches. What is the diameter of the bore of the glass tube? Answer. ©286 inch.

BAROMETER CORRECTIONS.

(I.) On two separate occasions the height of the mercury column in a barometer was observed to be 74.8 centimetres, but on the first occasion the temperature of the air was $16^{\circ} \mathrm{C}$., while on the second occasion it was $-8^{\circ} \mathrm{C}$. Reduce these two observations to what they would have been if the temperature had been $0^{\circ} \mathrm{C}$.

If h_{0}, d_{0}, and h_{t}, d_{t} be the heights and densities of equivalent mercury columns at $0^{\circ} \mathrm{C}$. and $t^{\circ} \mathrm{C}$. respectively, and remembering that the densities are inversely as the volumes, we have
$\frac{h_{0}}{h_{t}}=\frac{d_{t}}{d_{0}}=\frac{I}{1+k t}\left\{\begin{array}{c}\text { where } k \text { is the coefficient of cubical ex- } \\ \text { pansion of mercury. }\end{array}\right.$

$$
\therefore \quad h_{0}=\frac{h_{t}}{1+k t}
$$

Hence the first observation, when reduced to its equivalent at $\circ^{\circ} \mathrm{C}$., becomes

$$
h_{0}=\frac{7 \cdot 48}{1+\frac{16}{555^{\circ}}}=74.585 \text { centimetres }
$$

The second becomes

$$
h_{0}^{\prime}=\frac{74 \cdot 8}{1-\frac{8}{555^{\circ}}}=74 \cdot 908 \text { centimetres. }
$$

(2.) What was the atmospheric pressure per square centimetre of surface on each of these occasions?

The pressure on a square centimetre is equal to the weight of a column of mercury of one square centimetre section, whose height and density are that of the barometric column.
\therefore Pressure on first occasion $=74.585 \times 13.596=1014.058$ grammes weight.
Pressure on second occasion $=74.908 \times 13.596=1018.449$ grammes weight.
(3.) The heights of the barometer were observed simultaneously at two places, and found to be 76.2 and 72.8 centimetres, the temperature at the first place being $28^{\circ} \mathrm{C}$., and at the second place $2^{\circ} \mathrm{C}$. What would have been the equivalent values at $0^{\circ} \mathrm{C}$.?

Answer. $75^{\circ} 817$ and $7^{\circ} 774$ centimetres.
(4.) Assuming that the extreme height of the barometric column in England is 80 centimetres, and that the extreme temperature is $25^{\circ} \mathrm{C}$., what is the greatest possible value of the requisite correction to reduce the observation to its equivalent at $0^{\circ} \mathrm{C}$.?

Answer. -3.6 millimetres approximately.
(5.) The height of the barometric column was observed to be 76.2 centimetres when the thermometer stood at $15^{\circ} \mathrm{C}$. What correction would have to be applied to reduce this to the standard temperature of $0^{\circ} \mathrm{C}$. ?

Answer. - 2.06 millimetres.
(6.) At the temperature of $18^{\circ} \mathrm{R}$. the height of the barometric column was observed to be $73^{\circ} 3$ centimetres. Reduce this to the standard temperature of $0^{\circ} \mathrm{C}$.

Answer. 73004 centimetres.
(7.) Reduce an observed barometric height of 76.44 centimetres at $20^{\circ} \mathrm{C}$. to its equivalent at the standard temperature of $0^{\circ} \mathrm{C}$. Answer. 76.165 centimetres.
(8.) An English barometer with a brass scale which was correctly graduated at $62^{\circ} \mathrm{F}$. reads $29^{\circ} 7 \mathrm{I}$ inches when the temperature of the air is $45^{\circ} \mathrm{F}$. Reduce this to the equivalent reading at $32^{\circ} \mathrm{F}$.
Let $a=$ coefficient of linear expansion of the scale for $1^{\circ} \mathrm{F}$.
$k=$, cubical " mercury "
$t=$ temperature of the air at the time of the observation.
$t^{\prime}=\quad$ " \quad when the scale was graduated.
Since the temperature of the scale when this observation is made is lower than what it was when the scale was graduated, each apparent inch is less than a true inch by the quantity $a\left(t^{\prime}-t\right)$.
$\therefore h_{t}$ apparent inches $=h_{t}\left(\mathrm{I}+a \overline{t-t^{\prime}}\right)$ true inches ; and \therefore by the method of Example 1 ,

$$
h_{0}=h_{t} \frac{\mathrm{I}+a\left(t-t^{\prime}\right)}{\mathrm{I}+k t}
$$

But

$$
\begin{aligned}
& a=\frac{5}{9 \times 53333}=0000104 ; k=\frac{5}{9 \times 555^{0}}=0001001 ; \\
& h_{t}=29.71 ; t=45-32=13 ; t^{\prime}=62-3^{2}=30 ; \\
& \quad \therefore h_{0}=29.71 \frac{1-17 \times \cdot 0000104}{1+13 \times 0001001}=29^{.71} \times \frac{.9998232}{1.001301}
\end{aligned}
$$

$=29^{\circ} 67$ inches nearly.
(9.) The same barometer on another occasion reads 30 inches at $60^{\circ} \mathrm{F}$. What is the atmospheric pressure in true inches of mercury at $3^{\circ} \mathrm{F}$.? Answer. $29^{\circ} 9{ }^{15} 5$ inches.
(ro.) On another occasion this barometer indicated $30^{\circ} 09$ inches at $5^{\circ} \mathrm{F}$. Reduce this to true inches of mercury at $3^{\circ} \mathrm{F}$. Answer. $30^{\circ} 01$ inches.
(ir.) The brass scale of a certain barometer was correctly graduated at $10^{\circ} \mathrm{C}$. At what temperature will the observed reading require no temperature correction?

Let $x^{\circ} \mathrm{C}$. be the required temperature, and let y be the height of the mercury column as indicated by the scale at this temperature. Then, by the method adopted in Example 8 , the length of the mercury column at $x^{\circ} \mathrm{C}$., reduced to its equivalent at $0^{\circ} \mathrm{C}$., will be
$\frac{y\left\{1+\frac{x-10}{53.333}\right\}}{\mathrm{I}+\frac{x}{5550}}$ and this $=y$ since no correction is re-

$$
\therefore \frac{x-10}{53333}=\frac{x}{5550} \text {; }
$$

whence $x=-1 \cdot 16^{\circ} \mathrm{C}$.
(12.) A barometer with a brass scale, which was correctly graduated at $0^{\circ} \mathrm{C}$., stands at 77.8 centimetres on a certain occasion when the temperature is $20^{\circ} \mathrm{C}$. What pressure in kilogrammes per square centimetre does this indicate?

Anstier. I 054 kilogrammes per square centimetre.

BOYLE'S LAW.

(r.) When the barometer stands at 76 centimetres, and the thermometer at $0^{\circ} \mathrm{C}$., the space occupied by I 203 grammes of dry air is one cubic decimetre (one litre). What space will this quantity of air occupy when the barometer stands at 5^{2} centimetres, the temperature remaining constant?

According to Boyle's law the pressure of a given quantity of gas at a constant temperature varies inversely as the space it occupies. Hence, if $p_{1}, v_{1}, p_{2}, v_{2}$ represent corresponding values of the pressure and volume of a quantity of gas whose temperature is constant, Boyle's law asserts that

$$
\begin{gathered}
p_{1} v_{1}=p_{2} v_{2} \\
\therefore v_{2}=\frac{p_{1}}{p_{2}} \times v_{1} .
\end{gathered}
$$

But in the present case $p_{1}=76, p_{2}=5^{2}, v_{1}=1000$ c.c.

$$
\therefore v_{2}=\frac{76 \times 1000}{5^{2}}=1461 \cdot 5 \mathrm{c.c.}
$$

(2.) A balloon containing 1,200 cubic metres of gas when the pressure corresponds to a mercury column of 77 centimetres, ascends until the barometer stands at 53 centimetres. What volume will the gas in the balloon now occupy, supposing that none has escaped ?

Answer. $1743^{\circ} 4$ cubic metres.
(3.) An air-bubble at the bottom of a pond 3 metres deep has a volume of one cubic millimetre. What space will it occupy when it just reaches the surface, the barometer standing at 76 centimetres and mercury being ${ }_{1} 3^{6} 6$ times as heavy as the water in the pond?

The pressure at the bottom of the pond when expressed in terms of the equivalent mercury column is

$$
p_{1}=76+\frac{300}{13 \cdot 6}=\frac{1109 \cdot 6}{13 \cdot 6} \text { centimetres. }
$$

Pressure at the top is $p_{2}=76$ centimetres
$\therefore v_{2}=\frac{p_{1}}{p_{2}} \times v_{1}=\frac{1109^{.6}}{13^{.6}} \times \frac{1}{76}=1.0735$ cub. millimetres.
(4.) One of Coxwell's balloons was filled with 90,000 cubic feet of coal gas, when the atmospheric pressure was equivalent to 30 inches of mercury. It ascended until the atmospheric pressure was equal to that of 7 inches of mercury. If the temperature had remained constant, what quantity of gas must have escaped by the valve ?

By Boyle's law

$$
\begin{gathered}
\frac{v_{2}}{v_{1}}=\frac{p_{1}}{p_{2}} \\
\therefore \frac{v_{2}-v_{1}}{v_{1}}=\frac{p_{1}-p_{2}}{p_{2}}=\frac{23}{7} \therefore v_{2}-v_{1}=\frac{23}{7} \times v_{1} .
\end{gathered}
$$

But the density of the expanded gas is only $\frac{7}{30}$ of its original density, and therefore the quantity of gas which escaped when reduced to its original density was

$$
\frac{7}{30} \times \frac{23}{7} \times v_{1}=\frac{23}{30} \times 90000=69000 \text { cubic feet. }
$$

15.) The shorter branch of a Marriotte's tube (the wellknown apparatus for testing Boyle's law) contains initially 5 cubic centimetres of air at the pressure of 76 centimetres of mercury, and the bore of the tube is such that a length of one centimetre has a capacity of one cubic centimetre. What will be the volume and pressure of the enclosed mass of air if 76 cubic centimetres of mercury are poured into the longer branch?

Let x be the height, in centimetres, through which the mercury rises in the shorter arm.

The difference of level of the surfaces of the mercury in the two branches is $\therefore(76-2 x)$ centimetres.

The space occupied by the air in the shorter arm is $(5-x)$ c.c., and the pressure upon it is $76+(76-2 x)=2(76-x)$ centimetres of mercury.

Hence applying the equation

$$
\frac{v_{2}}{v_{1}}=\frac{p_{1}}{p_{2}}
$$

we have

$$
\frac{5-x}{5}=\frac{76}{2(76-x)} \text { whence } x=\frac{81 \pm 76 \cdot 164}{2}
$$

and since the smaller value of x is obviously the only admissible one, we get

$$
x=2.418 \mathrm{c.c} .
$$

and \therefore space occupied by the air is

$$
5-x=5-2.418=2.582 \text { c.c. }
$$

Also the new pressure is $2(76-x)=2(73.582)=147 \cdot 164$ centimetres.
(6.) The two branches of a Marriotte's tube are graduated in centimetres, and the sectional area of the bore is one square centimetre. There are io centimetres of air in the shorter branch, and the difference of level of the mercury in the two branches is 108 centimetres. The laboratory barometer stands at 75 centimetres. What is the pressure of the air in the tube, and what length would it occupy if it were under the atmospheric pressure only?

$$
\begin{aligned}
& \text { Anszev. } \quad \text { Pressure }=183 \text { centimetres of mercury. } \\
& \text { Volume }=24^{\circ} 4 \text { c.c. }
\end{aligned}
$$

(7.) In another experiment with the same tube the air in the closed branch occupied 8 cubic centimetres when the mercury was at the same level in both branches, and the barometer stood at 76 centimetres. How much mercury had to be poured into the longer branch so as to compress the air to 3 cubic centimetres ?

Let x be the number of cubic centimetres required,
then since the surface of the mercury in the closed branch ascends 5 centimetres, the difference of level of the mercury in the two branches is $(x-10)$ centimetres. Hence by Boyle's law

$$
\frac{8}{3}=\frac{76+x-10}{76}
$$

whence $x=136_{3}^{2}$ cubic centimetres.
(8.) A narrow glass tube of uniform cojlindrical bore and closed at one end is supported vertically, with its open end upwards. It contains a column of dry air which occupies a length of 16 centimetres, which is surmounted by a column of mercury 4 centimetres long. The laboratory barometer standing at 76 centimetres and the temperature remaining constant, if the tube be inverted, what length will the air occupy ?

Let v be the volume in cubic centimetres of a length of one centimetre of the bore of the tube, and let x be the length in centimetres which is occupied by the air in the second case.

Then

$$
\frac{v_{2}}{v_{1}}=\frac{x \times v}{16 \times v}=\frac{x}{16}
$$

Also the pressure of the air in first position $=76+4=80$ centimetres.
The pressure of the air in second position $=76-4=72$ centimetres.

And by Boyle's law

$$
\frac{80}{72}=\frac{v_{2}}{v_{1}}=\frac{x}{16} \therefore x=17 \frac{7}{9} \text { centimetres. }
$$

(9.) What would have been the length occupied by the air in the second position if the initial length of the air column had been 14 centimetres, that of the mercury column 10 centimetres, and the barometric pressure 74 centimetres? Answer. 183 ${ }^{\frac{3}{8}}$ centimetres.
(ro.) A tube similar to the last contained some dry air which was separated from the external air by a column of mercury 8 centimetres long. When the tube was horizontal the air occupied a length of 12 centimetres, and when the tube was vertical with the open end upwards the air column was 10.8 centimetres long. The temperature being constant, what was the barometric pressure?

Let x be the atmospheric pressure in centimetres of mercury, then the pressure on the enclosed air when the tube is horizontal $=x$
the pressure on the enclosed air when the tube is vertical $=x+8$.
\therefore by Boyle's law

$$
\frac{x+8}{x}=\frac{12}{10 \cdot 8} \therefore x=72 \text { centimetres. }
$$

(II.) If an error of one millimetre in excess were made in reading off the length of the air column in both positions, what would have been the indicated barometric height ?

Answer. $72 \frac{2}{3}$ centimetres.
(12.) A barometer tube one metre long is inverted to the depth of one centimetre in a deep trough of mercury, and contains a certain quantity of dry air which, at the beginning of the experiment, is at a pressure of 3^{2} centimetres of mercury. The tube is then lowered into the trough until the pressure is equivalent to $44^{\circ} 2$ centimetres of mercury. The barometric pressure being 75 centimetres, what length of the tube is occupied by the air in the second position?

Since the lower end of the tube is initially at one centimetre below the surface of the mercury in the trough, the length of the mercury column in the tube is

$$
75-3^{2}=43 \text { centimetres, }
$$

and the length occupied by the air in the first position is

$$
\therefore 99-43=56 \text { centimetres. }
$$

If x be the length occupied by the air in the second position, Boyle's law gives us

$$
\frac{x}{5^{6}}=\frac{32}{44^{2} 2} \therefore x=40^{\circ} 54 \text { centimetres nearly. }
$$

(13.) In another experiment with a similar apparatus the air in the tube occupied initially a length of 26 centimetres, and the surface of the mercury in the tube was 30 centimetres above that of the mercury in the trough. On raising the tube 20 centimetres the length of the air space was observed to be 42.8 centimetres, and the height of the mercury above that in the trough was $47^{\circ} 2$ centimetres. What was the barometric pressure?

Let x be the barometric height in centimetres, then by Boyle's law

$$
\frac{x-47^{\circ} \cdot 2}{x-30}=\frac{26}{4^{2} \cdot 8} \therefore x=73 \cdot 8 \text { nearly }
$$

(14.) An imperfectly exhausted barometer of uniform bore registers 75° r centimetres when the laboratory barometer registers 76.2 centimetres, and the space above the mercury is 6 centimetres. What will be the true reading when this barometer indicates 74 centimetres?

Let x be the true barometric pressure in second case, then Pressure of the enclosed air in second case $=x-74$ centimetres.
Pressure of the enclosed air in first case $=76^{\circ} 2-75^{\circ} \mathrm{I}=\mathrm{r}^{\circ} \mathrm{I}$ centimetres, and by Boyle's law

$$
\frac{x-74}{I^{\cdot I}}=\frac{6}{7^{\prime} \mathrm{I}} \therefore x=74^{\circ} 93 \text { centimetres nearly. }
$$

(15.) The height of the top of a uniform barometer tube above the surface of the mercury in the tank is 83 centimetres. On account of an imperfect vacuum the barometer registers $71^{\circ} 5$ centimetres when the barometric height is 72.5 centimetres. What will be the true barometric height when this barometer registers 74.8 centimetres ?

Answer. 76.2 centimetres.
(16.) The air in the manometer (pressure gauge) attached to a condensing air-pump initially occupies 160 subdivisions of the tube and the pressure is 76 centimetres of mercury, which is also that of the external air. After a certain number of strokes of the piston, the air in the manometer is compressed to 20 subdivisions and the mercury has risen through a height of 50 centimetres. In what ratio has the quantity of air in the receiver been augmented if the temperature has remained constant?

The pressure of the air in manometer

$$
=\frac{160}{20} \times 76=608 \text { centimetres, }
$$

and since the pressure of the air in the receiver balances this pressure and that of 50 centimetres of mercury, we have

$$
\begin{aligned}
p_{2} & =608+50=658 \text { centimetres. } \\
\text { Also } p_{1} & =76 . \\
v_{1} & =1 .
\end{aligned}
$$

And when the temperature and the volume are constant the pressure must vary directly with the quantity of air in a given space ;

$$
\therefore \frac{\text { air in receiver finally }}{\text { air in receiver initially }}=\frac{p_{2}}{p_{1}}=\frac{658}{7^{6}}=8.658 .
$$

(17.) A barometer tube of uniform bore was held with its closed end downwards, and was filled with mercury up to a distance of 12 centimetres from the top, the remainder containing dry air. The tube was then closed with the finger and inverted in a deep trough of mercury and supported in a vertical position, so that the level of the mercury in the tube was $25^{\circ} 6$ centimetres above that of the mercury in the trough, while the length of tube occupied by the air was 18.2 centimetres. What was the barometric pressure?

Let x be the barometric height in centimetres. When the tube is inverted in the mercury trough the pressure
of the air inside is obtained by Boyle's law from the equation,

$$
p=\frac{12}{18 \cdot 2} \times x(\mathrm{I}) .
$$

But since the pressure of the air in the tube, together with the weight of a column of mercury $25^{\circ} 6$ centimetres high, balances the atmospheric pressure x, we have also

$$
p=x-256(2)
$$

From (1) and (2) we get $x=75^{\circ} 15$ centimetres nearly.
(18.) A closed barometer tube, the lower portion of which is immersed vertically in a deep trough of mercury, contains 2.5 c.c. of dry air, and the level of the mercury in the tube above that in the trough is 62.3 centimetres. The tube is then raised until the enclosed air occupies 3.5 c.c., and it is then found that the level of the mercury in the tube above that in the trough is 65.9 centimetres. Find from these data the barometric pressure.

Answer. 74.9 centimetres.
(19.) A glass vessel which can be closed by a stopcock is filled with dry air at the pressure of 75 centimetres of mercury, and is then connected with the upper part of a cistern barometer which has also a stopcock at the top. The bore of this tube is uniform and one square centimetre in section, and its top is 83 centimetres above the level of the mercury in the cistern. On opening both stopcocks the mercury in the barometer tube sinks and comes to rest, with its surface 9.3 centimetres above that of the mercury in the cistern. Find the capacity of this glass vessel.

Let v be the capacity of the glass vessel in cubic centimetres. On opening the stopcocks the air, which originally occupied a space of v c.c., now occupies a space of $v+73^{\circ} 7$ cubic centimetres.

Also the pressure of the air at first is 75 centimetres, and
after the stopcocks are opened it is $75-9^{\circ} 3=65^{\circ} 7$ centimetres. Applying Boyle's law we have therefore

$$
\begin{aligned}
\frac{v}{v+73^{\circ} 7} & =\frac{65^{\circ} 7}{75} \\
\therefore v & =5^{20} 7 \text { c.c. nearly. }
\end{aligned}
$$

(20.) Another glass vessel with a stopcock was filled with dry air when the barometer stood at 77 centimetres, and was then connected with the upper part of a very wide barometer tube, whose length above the surface of the mercury in the cistern was 90 centimetres, and whose sectional area was 20 square centimetres. On opening the stopcocks the mercury in this tube descended till its surface was 40 centimetres above that of the mercury in the cistern. What was the capacity of the glass vessel ?

$$
\text { Answer. } 925 \text { c.c. }
$$

(21.) Five cubic centimetres of dry air at atmospheric pressure are introduced into the vacuum of a barometer which previously stood at 76.2 centimetres, and occupy a volume of 8 cubic centimetres. By how much is the barometric column depressed ?

Answer. $47^{\circ} 6$ centimetres nearly.
(22.) A barometer tube of uniform cylindrical bore is lowered mouth downwards into a deep trough of mercury. The upper part of the tube contains dry air which occupies a length of 19 centimetres, and the surface of the mercury in the tube is 6 centimetres above that of the mercury in the trough. If the temperature remain constant and the barometric pressure be 75° centimetres, what will be the height of the mercury in the tube and the length of the air column if the tube be raised through a vertical height of 20 centimetres?

Let the required height of the mercury column $=x$ centimetres, then the length of the corresponding air column $=25+20-x=45-x$ centimetres, and if h be the height of the barometric column the pressure of the enclosed air in
the first position is $h-6$ and in the second position it is $h-x$; hence, applying Boyle's law, we have

$$
\frac{19}{45-x}=\frac{h-x}{h-6}=\frac{75^{\circ} \cdot-x}{69^{\cdot 2}}
$$

Solving this quadratic equation we obtain

$$
x=60 \cdot 1 \pm 39^{\circ} 28
$$

and it is obvious that the smaller value of x is the only one which satisfies the conditions of this problem. Hence

$$
x=60 \cdot 1-39^{\circ} 28=20.82 \text { centimetres },
$$

and corresponding length of air column $=45-x=24 \cdot 18$ centimetres.

LAW OF CHARLES.

(r.) A very long horizontal glass tube of uniform bore is closed at one end and subdivided into parts of equal capacity It contains a quantity of dry air which, at $0^{\circ} \mathrm{C}$. occupies 273 subdivisions of the tube, and which is cut off from the external air by a small pellet of mercury. What number of subdivisions will the air occupy if its temperature be raised to $60^{\circ} \mathrm{C}$. ?

Charles, a Professor of Physics at Paris (born 1746, died 1823), discovered that when a quantity of gas is heated under constant pressure from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. its volume increases by $\frac{1}{2} \frac{1}{3}$ rd of itself for each degree Centigrade, whatever be the nature of the gas.

Hence if v_{t} and v_{0} be the volumes of the same quantity of gas at $t^{\circ} \mathrm{C}$. and $0^{\circ} \mathrm{C}$. respectively, applying Charles's law we have

$$
v_{t}=v_{0}\left(\mathrm{r}+\frac{t}{273}\right)
$$

In the present case $v_{0}=273, t=60$.

$$
\therefore v_{60}=273\left(1+\frac{60}{273}\right)=333 \text { subdivisions. }
$$

(2.) If the tube and the air contained in it were cooled down to $-60^{\circ} \mathrm{C}$., what space would the air occupy ?

For the lowest temperature hitherto attainable Charles's law is found to hold good, and therefore we have

$$
v_{60}=v_{0}\left(1-\frac{60}{273}\right)=273-60=213 \text { subdivisions. }
$$

(3.) Assuming that Charles's law still held for such a low temperature as $-273^{\circ} \mathrm{C}$. and that the air were still a gas at that temperature, what volume would it occupy?

$$
\text { Answer. } \quad v_{273}=273\left\{1-\frac{273}{273}\right\}=0
$$

Note.-According to the dynamical theory of heat the temperature of a body depends upon the kinetic energy of its molecules, and in the case of a gas it maintains its volume in opposition to the external pressure by means of its molecular energy. If the gas were unable to maintain any volume at all we must suppose that it has lost all its molecular energy, and therefore that its temperature is absolutely zero. This imaginary temperature of $-273^{\circ} \mathrm{C}$. is called the absolute zero of the air thermometer, and temperatures reckoned from this point are called absolute temperatures.
(4.) The coefficient of expansion of gases for $I^{\circ} \mathrm{C}$. is $\frac{1}{2} \frac{1}{3}$. What is the coefficient of expansion for $I^{\circ} \mathrm{R}$. and for $\mathrm{I}^{\circ} \mathrm{F}$. ?

$$
\begin{aligned}
\text { Answer. For } I^{\circ} \text { R. } x=\frac{1}{218.4} \\
\text { For } I^{\circ} \text { F. } x=\frac{1}{491^{\circ} 4}
\end{aligned}
$$

(5.) Express all these coefficients in decimals to six places. Answers. ${ }^{\circ} 003663$; '004579; •002035.
(6.) What is the absolute temperature which corresponds to $\circ^{\circ} \mathrm{C}$. and also to $\circ^{\circ} \mathrm{F}$. ?

To obtain the absolute temperature on the Centigrade scale we must add $273^{\circ} \mathrm{C}$. to the measure of the temperature in that scale.

Hence

$$
\begin{aligned}
& \mathrm{T}_{1}=0+273=273 \\
& \mathrm{~T}_{2}=-17 \frac{7}{9}+273=255^{3} \mathrm{~g}
\end{aligned}
$$

(7.) A certain quantity of gas occupies 15 litres at $20^{\circ} \mathrm{C}$. If the pressure remain constant, what space will this gas occupy at $80^{\circ} \mathrm{C}$. ?

Let $v_{1}, t_{1}, v_{2}, t_{2}$ be the corresponding values of the volume and temperature of a given quantity of gas when the temperature is constant, then by Charles's law

$$
\begin{align*}
& v_{1}=v_{0}\left(\mathrm{I}+\frac{t_{1}}{273}\right)=v_{0} \frac{t_{1}+273}{273} \tag{I}\\
& v_{2}=v_{0}\left(\mathrm{I}+\frac{t_{2}}{273}\right)=v_{0} \frac{t_{2}+273}{273} \tag{2}
\end{align*}
$$

$\therefore \frac{v_{2}}{v_{1}}=\frac{273+t_{2}}{273+t_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ where T is the absolute temperature.
In the present case

$$
\frac{v_{2}}{15}=\frac{273+80}{273+20}=\frac{353}{293} \therefore v_{2}=18.072 \text { litres nearly. }
$$

(8.) A quantity of gas occupies 30 cubic inches at the normal pressure and $62^{\circ} \mathrm{F}$. What will be its volume at the temperature of freezing water?

Answer. 28.274 cubic inches.
(9.) A quantity of oxygen occupies 150 cubic centimetres at $15^{\circ} \mathrm{C}$. What space will it occupy at the same pressure if the temperature be reduced to $0^{\circ} \mathrm{C}$. ?

$$
\text { Answer. } 142 \cdot 19 \text { c.c. }
$$

(io.) A gas has its temperature raised from $8^{\circ} \mathrm{C}$. to $72^{\circ} \mathrm{C}$. and at the latter temperature it occupies 12 litres. The pressure being constant what was its original volume? Answer. 9.7739 litres.
(ir.) At 76 centimetres of barometric pressure and $0^{\circ} \mathrm{C}$. the space occupied by $\mathrm{r}{ }^{2} 293$ grammes of air is one litre. At what temperature will the mass of one litre of air be one gramme, the pressure remaining constant ?

Let $x^{\circ} \mathrm{C}$. be the required temperature, then by Charles's law we have

$$
\frac{273+x}{273}=\frac{1 \cdot 293}{1} \therefore x=80^{\circ} \mathrm{C} . \text { nearly. }
$$

Note.-The mass of a litre of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure varies with the intensity of gravity. But no correction on this account is necessary, as in weighing a litre of air the maximum error which could arise from this cause cannot exceed one milligramme, which is less than the possible error arising from any uncertainty in the determination of the quantity of aqueous vapour in the air.
(i2.) At what temperature has carbonic acid gas the same density as oxygen gas at $0^{\circ} \mathrm{C}$. ? The mass of a litre of carbonic acid gas at the normal temperature and pressure is r 977 grammes, and that of a litre of oxygen 1.430 grammes. Answer. $1044^{\circ} \mathrm{C}$.
(13.) A litre of hydrogen at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure contains 0896 gramme. At what temperature will the density of air be equal to that of hydrogen at $\circ^{\circ} \mathrm{C}$., the pressure remaining constant? Answer. $3666.6^{\circ} \mathrm{C}$.
(14.) At what temperature has air the same density as oxygen at $0^{\circ} \mathrm{C}$.? Answer. $-26.12^{\circ} \mathrm{C}$.
(15.) How many grammes of air are there in a room which is $16 \times 18 \times 12$ feet, when the barometer stands at 76 centimetres, the thermometer at $25^{\circ} \mathrm{C}$., and the aqueous vapour is neglected ?

Since one cubic foot $=28316$ c.c., the capacity of the room $=28316 \times 16 \times 18 \times 12$ c.c.

But at $25^{\circ} \mathrm{C}$. and 76 centimetres pressure the mass of one cubic centimetre of air is $001293 \times \frac{273}{298}$ gramme.
\therefore quantity of air in the room

$$
\begin{aligned}
& =28316 \times 16 \times 18 \times 12 \times 001293 \times \frac{273}{298} \\
& =115918 \text { grammes. } \\
& =115918 \text { kilogrammes. }
\end{aligned}
$$

(16.) What would have been the quantity of air in the room if the temperature had been $0^{\circ} \mathrm{C}$., the pressure remaining the same? Answer. 126.533 kilogrammes.
(17.) A glass flask with a stopcock is filled with dry air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure and then weighed. It is then opened, heated to $100^{\circ} \mathrm{C}$., closed and weighed again, when it is found that 1.23 grammes of air have escaped. What was the capacity of this flask at $0^{\circ} \mathrm{C}$.?

With the usual notation we find that
Capacity of flask at $100^{\circ} \mathrm{C} .=v_{0}\left(1+\frac{100}{3^{8} 53^{6}}\right)=v$.
And v_{0} c.c.s of air at $0^{\circ} \mathrm{C}$. occupy at $100^{\circ} \mathrm{C}$. a volume.

$$
=v_{0}\left(1+\frac{100}{273}\right)=v^{\prime},
$$

\therefore the volume of the air at $100^{\circ} \mathrm{C}$. which escapes is

$$
v^{\prime}-v=v_{0}\left\{\frac{100}{273}-\frac{100}{3^{8} 53^{6}}\right\}=v_{0} \times 3637 .
$$

But the density of the air at $100^{\circ} \mathrm{C} .=001293 \times \frac{273}{373}$,
\therefore the mass of the air which escapes

$$
=v_{0} \times 3637 \times \cdot 001293 \times \frac{273}{373} \text { grammes, }
$$

$=1.23$ grammes by the question;
$\therefore v_{0}=\frac{1.23 \times 373}{3^{6} 37 \times 273 \times 001293}=3573.6 \mathrm{c} . \mathrm{c}$.
(18.) Another glass flask was filled with dry air at $10^{\circ} \mathrm{C}$. and 76 centimetres barometric pressure, and was then weighed. It was then heated to $100^{\circ} \mathrm{C}$., and the stopcock closed. Upon weighing it again it was found that δ_{3} gramme of air had escaped. What was the interior capacity of this flask at the lower temperature?
(19.) This experiment was repeated with another flask, and on weighing it the second time it was found that 92 of a gramme of air had escaped. What was the capacity of the flask at 0° C.? Answer. 2673 c.c. nearly.

GENERAL MEASUREMENTS OF GASES.

(r.) Three litres of dry gas are measured off at $15^{\circ} \mathrm{C}$. and 76.7 centimetres barometric pressure. Find the volume of this gas at the standard temperature of $0^{\circ} \mathrm{C}$., and the standard barometric pressure of 76 centimetres of mercury.

The laws of Boyle and Charles may be combined into the statement that 'the product of the volume and pressure of any gas is proportional to the absolute temperature.'

Hence, if $\mathrm{v}, \mathrm{P}, \mathrm{T}$ be the actual volume, pressure, and absolute temperature, and v_{0} the volume when reduced to the standard pressure P_{0}, and the standard absolute temperature T_{0}, we shall have

$$
\begin{gathered}
\frac{V P}{T}=\frac{V_{0} P_{0}}{T_{0}}, \\
\therefore V_{0}=V \times \frac{P}{P_{0}} \times \frac{T_{0}}{T} .
\end{gathered}
$$

In the present case $\left.\left.\begin{array}{l}\mathrm{P}=76 \cdot 7 \\ \mathrm{P}_{0}=76\end{array}\right\} \begin{array}{l}\mathrm{T}=288 \\ \mathrm{~T}_{0}=273\end{array}\right\} \mathrm{v}=3$,

$$
\therefore \mathrm{v}_{0}=3 \times \frac{76.7}{76} \times \frac{273}{288}=2.8699 \text { litres. }
$$

(2.) A quantity of gas measures 30 cubic centimetres at $20^{\circ} \mathrm{C}$. and 36 centimetres barometric pressure. What space will it occupy at the standard temperature and pressure?

$$
\text { Answer. } 13.24 \text { c.c. nearly. }
$$

(3.) Reduce 2.5 litres of dry air at $25^{\circ} \mathrm{C}$. and under a pressure of 74 centimetres of mercury, to the corresponding volume at standard temperature and pressure.

Cizswer. 2.23 litres.
(4.) A quantity of dry air at $15^{\circ} \mathrm{C}$. exerts a pressure of 16 lbs . to the square inch on the sides of the containing vessel, which are assumed to be inextensible. What will be the pressure per square inch if the temperature be raised to $100^{\circ} \mathrm{C}$.?

By the combination of the laws of Boyle and Charles, as stated in the solution of Example 1, we see that

$$
\frac{\mathrm{VP}}{\mathrm{~T}}=\mathrm{a} \text { constant }
$$

and then if v remain constant, and $\mathrm{P}_{1}, \mathrm{~T}_{1} ; \mathrm{P}_{2}, \mathrm{~T}_{2}$ be corresponding values of the pressure and absolute temperature,

$$
\begin{gathered}
\left.\begin{array}{c}
\frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}} \therefore P_{2}=P_{1} \times \frac{T_{2}}{T_{1}} \\
\operatorname{But}_{2}=273+100=373 \\
T_{1}=273+15=288
\end{array}\right\} P_{1}=16 ; \\
\therefore P_{2}=16 \times \frac{373}{288}=20.72 \mathrm{lbs} . \text { approximately. }
\end{gathered}
$$

(5.) If the space occupied by the air in an air thermometer be kept constant while its pressure changes from 76 to 102 centimetres of mercury, what is the change of temperature, the initial temperature being $10^{\circ} \mathrm{C}$. ?

Answer. $96.8^{\circ} \mathrm{C}$. nearly.
(6.) Two vessels contain air at the same pressure, namely, 76 centimetres of mercury, but at different temperatures, $50^{\circ} \mathrm{C}$. and $60^{\circ} \mathrm{C}$. If the temperature of each be increased by $10^{\circ} \mathrm{C}$., find which has its pressure the most increased?

Anszuer. The one whose temperature was originally lowest.
(7.) Two inextensible vessels contain air at the same temperature, namely, $14^{\circ} \mathrm{C}$., but at the respective pressures of 76.2 and 76.5 centimetres of mercury. The temperature of each being increased by $20^{\circ} \mathrm{C}$., find which has its pressure most increased.

Answer. The one whose original pressure was 76.5 centimetres.
(8.) If 3 litres and 5 litres of two different gases, at the same temperature of $13^{\circ} \mathrm{C}$., but at the respective pressures of 74° and 76.3 centimetres, be mixed together, the volume of the mixture being 6 litres and its temperature $8^{\circ} \mathrm{C}$., determine the pressure.

Let $\mathrm{v}_{1}, \mathrm{P}_{1} ; \mathrm{v}_{2}, \mathrm{P}_{2} ; \mathrm{v}, \mathrm{P}$, the volumes and pressures of the two gases and of their mixture all at the same initial temperature, then we have

$$
\begin{aligned}
\mathrm{VP} & =\mathrm{V}_{1} \mathrm{P}_{1}+\mathrm{v}_{2} P_{2} \\
& =3 \times 74.2+5 \times 76.3=604 . \mathrm{x}
\end{aligned}
$$

But by the question $v=6$,

$$
\therefore \mathrm{P}=\frac{604 \cdot \mathrm{I}}{6} \text { centimetres. }
$$

In the next place let the temperature of the mixture change from $13^{\circ} \mathrm{C}$. to $8^{\circ} \mathrm{C}$., the volume remaining constant, and let P^{\prime} be the final pressure, then

$$
\frac{\mathrm{P}^{\prime}}{\mathrm{P}}=\frac{8+273}{13+273}=\frac{28 \mathrm{r}}{286}
$$

$\therefore \mathrm{P}^{\prime}=\frac{28 \mathrm{I}}{286} \times \frac{604 \cdot \mathrm{r}}{6}=98.923$ centimetres.
(9.) Two cubic feet of oxygen, 5 cubic feet of nitrogen, and one cubic foot of hydrogen, all at the same temperature, and at a pressure of 76 centimetres of mercury, were mixed together, and the mixture was compressed into a space of 4 cubic feet. When the temperature was reduced to its original value what was the pressure ?

Answer. 152 centimetres.
(ro.) The air in an extensible spherical envelope has its temperature gradually raised from $0^{\circ} \mathrm{C}$. to $20^{\circ} \mathrm{C}$., and the envelope is allowed to expand until its radius is four times its original length. Compare the pressures of the air in the two cases. Answer. $p_{1}=p_{2} \times 59^{\circ} 6$ nearly.
(ir.) If the two vessels described in Example 7 were of the same size and were put in communication with each
other, what would be the pressure of the mixed air at the temperature of melting ice?

Answer. 72.626 centimetres.
(12.) The air in a spherical globe of 30 centimetres diameter is compressed into another globe of 15 centimetres diameter, and the temperature is raised from $10^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$. Compare the pressures of the air in the two cases, and also compare the pressures on the surfaces of the two globes.

By the combination of the laws of Boyle and Charles we have

$$
\begin{aligned}
& \frac{P_{2} V_{2}}{T_{2}}=\frac{P_{1} V_{1}}{T_{1}}, \\
& \therefore \frac{P_{2}}{P_{1}}=\frac{V_{1}}{V_{2}} \times \frac{T_{2}}{T_{1}}=\left(\frac{30}{15}\right)^{3} \times \frac{273+25}{273+10} \\
&=8 \times \frac{298}{283}=8.424 .
\end{aligned}
$$

Also $\frac{\text { whole pressure on surface of and globe }}{\text { whon }}$
whole pressure on suriace of ist globe
$=\frac{P_{2} \times \text { area of surface of } 2 \text { nd globe }}{P_{1} \times \text { area of surface of } 1 \text { st globe }}$
$=\frac{8.424}{\mathrm{I}} \times \frac{\mathrm{I}}{4}$
$=2 \cdot 106$.
(3 3.) The lid of a Papin's digester has a safety valve in the form of a frustrum of a cone, the diameter of the bottom of which is one centimetre. The space below the lid contains saturated steam and water. The pressure of the atmosphere is equal to 76 centimetres of mercury pressure, and it is required to raise the temperature of the water to $200^{\circ} \mathrm{C}$., at which temperature the pressure of saturated steam is equal to that of 11.689 metres of mercury. What pressure must be applied to the valve?

Neglecting the weight of the valve itself, which is inconsiderable, the mass which must be placed on the valve to keep it down must be at least equal to

$$
\begin{gathered}
\frac{\pi}{4} \times 13.596(1168.9-76)=11670.3 \text { grammes, } \\
=11.67 \text { kilogrammes approximately. }
\end{gathered}
$$

N.B. Papin was a philosopher who lived at Marburg during the middle of the seventeenth century.
(14.) What space will be occupied by $3^{.6}$ grammes of oxygen when the thermometer is at $23^{\circ} \mathrm{C}$. and the barometric height is 74° centimetres?

By the formula in Example 12 we have

$$
\mathrm{v}_{2}=\mathrm{v}_{1} \times \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \times \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

and from the data in Example 12, p. 68, we find that when $\mathrm{P}_{1}=76$ and $\mathrm{T}_{1}=273$, that $\mathrm{V}_{1}=\frac{3.6}{.00143}$ cub:c centimetres

$$
\text { Hence } \begin{aligned}
v_{2} & =\frac{3.6}{00143} \times \frac{76}{74^{2}} \times \frac{296}{273}=2795 \cdot 8 \text { c.c. } \\
& =2.795^{8} \text { litres. }
\end{aligned}
$$

(15.) What space will one gramme of hydrogen occupy at $14^{\circ} \mathrm{C}$. and 73 centimetres of barometric pressure ? Answer. 12.2152 litres.
(16.) At the standard pressure a gramme of a certain gas at $180^{\circ} \mathrm{C}$. measured 3 of a litre, and a gramme of another gas at $83^{\circ} \mathrm{C}$. measured 5 of a litre. Compare the masses of equal volumes of these two gases at $100^{\circ} \mathrm{C}$.

$$
\text { Answer. } \frac{\text { Mass of } \mathrm{I} \text { litre of first gas }}{\text { Mass of } \mathrm{I} \text { litre of second gas }}=\frac{2 \cdot 12}{\mathrm{I}} .
$$

(17.) What is the ratio of the mass of one litre of dry air at $15^{\circ} \mathrm{C}$. and 76 centimetres pressure to that of two litres of dry air at $200^{\circ} \mathrm{C}$. and 5° centimetres pressure? Answer. 5:4 nearly.
(18.) At what temperature will the density of oxygen gas at 56 centimetres pressure be the same as that of hydrogen at $0^{\circ} \mathrm{C}$. and 200 centimetres of barometric pressure?

$$
\text { Answer. } 947^{\circ} \mathrm{C} . \text { nearly }
$$

(ig.) A glass globe is filled with 8 litres of oxygen at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure, and the temperature is then raised to $16^{\circ} \mathrm{C}$. while the pressure falls to 75 centimetres. What quantity of oxygen will escape?

Space occupied by the air after expansion

$$
=8 \times \frac{289}{273} \times \frac{76}{75}=8.58 \mathbf{1 8} \text { litres. }
$$

Capacity of the globe after expansion

$$
=8\left\{1+\frac{16}{3^{8} 53^{6}}\right\}=8.0033 \text { litres. }
$$

\therefore volume of oxygen which escapes $={ }^{5} 5785$ litre $=578{ }^{\circ} 5$ c.c.

But the density of oxygen gas at $16^{\circ} \mathrm{C}$. and 75 centimetres pressure is $00143 \times \frac{273}{289} \times \frac{75}{76}$, hence the quantity of oxygen which escapes is $578.5 \times{ }^{0} 00143 \times \frac{273}{289} \times \frac{75}{76}=$ 77117 gramme.
(20.) A bottle is filled with air at $25^{\circ} \mathrm{C}$., and at atmospheric pressure which is 76 centimetres of mercury, and it is taken into a room where the temperature is $0^{\circ} \mathrm{C}$. If the glass stopper has an area of 3 square centimetres, what force will be needed to withdraw it over and above that which is required to overcome the friction?

Answer. 260.058 grammes weight.
(21.) If one litre of dry air at the standard temperature and pressure contains 1.293 grammes, what quantity will there be in one litre at $80^{\circ} \mathrm{C}$. and I 42 centimetres pressure? Answer. I•868 grammes.
(22.) At what temperature will 4.48 grammes of dry hydrogen gas occupy roo litres at 76 centimetres pressure?

From Example 13, p. 68, we find that at standard temperature and pressure 4.48 grammes of hydrogen will occupy -4.48 hitres.

And from the formula in Example 12, p. 73, we have

$$
\left.\begin{array}{c}
\begin{array}{c}
\mathrm{T}_{2} \\
\mathrm{~T}_{1}
\end{array}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} ; \\
\text { where } \mathrm{v}_{2}=100 \\
\mathrm{v}_{1}=\frac{4.48}{.0896}
\end{array}\right\} \text { and } \mathrm{T}_{1}=273 .
$$

\therefore temperature required $=546-273=273^{\circ} \mathrm{C}$.
(23.) If the temperature remained constant at $\circ^{\circ} \mathrm{C}$., at what pressure would 4.48 grammes of hydrogen occupy 100 litres?

By the formula in Example 12,

$$
P_{2}=76 \times \frac{4.48}{.0896} \times \frac{1}{100}=38 \text { centimetres. }
$$

(24.) A quantity of gas which was collected in a bellglass over a mercury pneumatic trough measured i74 c.c. The corrected barometric pressure was $75^{\circ} 2$ centimetres, the temperature $18^{\circ} \mathrm{C}$., and the level of the mercury in the bellglass was found by measurement to be 5.4 centimetres above the surface of the mercury in the trough. Find the volume of the gas when reduced to standard temperature and pressure. Answer. 149*95 c.c.

BUOYANCY OF THE AIR.

(r.) A military balloon which was used at Souakin in 1885 had a capacity of 198.212 cubic metres, and weighed $40 \cdot 8$ kilogrammes. If it were filled with hydrogen, at $0^{\circ} \mathrm{C}$. and 76 centimetres barometric pressure, what would be its buoyancy?

The mass of hydrogen in the balloon

$$
=198.212 \times .0896 \times \frac{273}{305}=15.894 \text { kilogrammes. }
$$

The mass of air displaced by the balloon

$$
=198.212 \times 1.293 \times \frac{273}{305}=229.399 \text { kilogrammes. }
$$

\therefore buoyancy $=229.399-(15.894+40.8)$.

$$
\begin{aligned}
& =229^{\circ} 399-56.694=172^{\circ} 705 \text { kilogrammes. } \\
& =\frac{172705}{453^{\circ} 6}=380^{\circ} 74 \mathrm{lbs}=27 \text { stone } 2.74 \mathrm{lbs}
\end{aligned}
$$

(2.) There are 700 litres of warm air at $80^{\circ} \mathrm{C}$. in a boy's fire-balloon, while the temperature of the surrounding air is $15^{\circ} \mathrm{C}$., and the barometric pressure 76 centimetres. If the balloon can just rise, what must be its mass?

Answeer. ${ }^{1} 58$ grammes nearly:
(3.) What would be the buoyancy of 1,000 litres of hydrogen at $0^{\circ} \mathrm{C}$. and 76 centimetres barometric pressure? Answer. 1,201 grammes.
(4.) The apparent mass of a quantity of platinum when counterpoised by brass weights in a delicate balance was 35 grammes. If the density of platinum be 22 , that of brass 8.4 , and that of air $\frac{1}{73}$, what would this mass of platinum weigh in vacuo?

Let $m=$ true mass of the platinum in grammes;
then $\frac{m}{22}=$ volume of this mass in cubic centimetres;
$\therefore \frac{m}{22} \times \frac{\mathrm{I}}{773}=\left\{\begin{array}{l}\text { mass in grammes of the air displaced by } \\ \text { the platinum. }\end{array}\right.$
Hence the apparent mass of the platinum in air

$$
=m\left\{1-\frac{1}{22 \times 773}\right\} \cdots(\mathrm{I})
$$

Again, the volume of the brass weights is $\frac{35}{8 \cdot 4}$ c.c., and the quantity of air displaced by the brass weights is $35 \times \frac{1}{773}$ grammes;
\therefore the apparent mass of the brass weights

$$
\begin{equation*}
=35\left\{\mathrm{I}-\frac{\mathrm{I}}{8.4 \times 773}\right\} \text { grammes } \tag{2}
\end{equation*}
$$

Since the apparent masses of brass and platinum are in equilibrium, equating (I) and (2) we have

$$
m\left\{\mathrm{I}-\frac{\mathrm{I}}{22 \times 773}\right\}=35\left\{\mathrm{I}-\frac{\mathrm{I}}{8.4 \times 773}\right\}
$$

whence $m=35 \times \frac{6492^{\cdot 2}}{6493^{2} \cdot} \times \frac{17006}{17005}=34.9967$ grammes.
(5.) The apparent mass of a quantity of aluminium, whose density is 2.57 , is 2 grammes when counterpoised with brass weights. What is its actual mass ?

Answer. 20006 grammes nearly.
Note. -In practice brass weights are generally employed. With the exception of aluminium, gold, and platinum, the density of the majority of the metals is not very different from that of brass, so that the correction on account of the buoyancy of the air may generally be omitted in weighing metals unless very great accuracy is required.
(6.) A certain balance is capable of weighing to $\frac{1}{10}$ th of a milligramme, and the weights are of brass, whose density is $8 \cdot 2$. Up to what weight will the effect of the air displaced by the weights be inappreciable?

Let $x=$ required weight in grammes, then $\frac{x}{8.2}$ is the volume of the air displaced by the weights in c.c.s, and at standard temperature and pressure the quantity of air displaced by these weights is $\frac{x \times 001293}{8: 2}$ grammes.

But the maximum value of this quantity of air must be not greater than $\frac{1}{10}$ th of a milligramme.

$$
\begin{gathered}
\therefore \frac{x \times \cdot 001293}{8.2}=\cdot 0001 \\
\therefore x={ }^{6} 634^{2} \text { gramme nearly. }
\end{gathered}
$$

(7.) If the balance was capable of weighing to centigrammes only, find the maximum weight for which the air displaced by the brass weights would be inappreciable.

Answer. 63.42 grammes.
(8.) It is required to weigh out accurately $23^{\circ} 5$ grammes of mercury. The density of mercury being I 3.596 , what must be the indicated value of the brass weights to be placed in the other scale-pan?

Let x be the required value of the brass weights in grammes ; then, since mercury is more dense than brass, the mass of the air displaced by the brass will exceed that of the air displaced by the mercury by a quantity which is very approximately equal to

$$
x \times 001293\left\{\frac{1}{8.4}-\frac{1}{13.596}\right\}=x \times 0000588 \text { grammes, }
$$

and therefore

$$
{ }^{2} 30^{\circ} 5=x\{1-.0000588\}
$$

whence $x=23^{\circ} 5^{1} 3^{6}$ grammes.
(9.) The density of ice being 92 , what brass weights must be used in order to weigh out 200 grammes of ice, allowing for the buoyancy of the air and taking the density of brass at 8.4 ? Answer. 199'75 grammes.
N.B. The student should notice that when the density of the substance is less than that of the material of the weights, the true mass is greater than the apparent mass, and vice versâ.
(ro.) A quantity of mercury weighed $75^{\circ} 261$ grammes in air when counterpoised with platinum weights. What was its true mass? Answer. $75^{\circ} 264$ grammes, very nearly.
(ri.) A piece of oak and a piece of platinum counterpoised each other in the scale-pans of an accurate balance. Compare their masses, taking into account the buoyancy of the arr, and assuming the density of platinum to be 22 , that of oak 69 , and that of air 0013 .

$$
\text { Answer. } \quad \frac{\text { Mass of the oak }}{\text { Mass of platinum }}=1 \cdot 00183 \text {. }
$$

(12.) At the standard temperature and pressure two glass flasks, which displaced I3 and 6 litres of air, equilibrated each other in a sensitive balance. After awhile the temperature of the air changed to $25^{\circ} \mathrm{C}$., and the pressure became 75 centimetres. What weight had to be added to one of the scale-pans so as to restore the equilibrium?

Let $m=$ mass of the larger flask in grammes. $m^{\prime}=$ smaller " "
At the standard temperature and pressure the quantity of air displaced by the larger flask is $13 \times 1.293=16.809$ grammes, and by the smaller flask is $6 \times 1.293=7.75^{8}$ grammes.

Hence the apparent mass of the larger flask $=m-16.809$ grammes, and the apparent mass of the smaller flask $=n^{\prime}-7{ }^{\circ} 75^{8}$ grammes; and as they equilibrate each other at this temperature and pressure,

$$
\begin{array}{r}
m-16.809=m^{\prime}-7.75^{8} ; \\
\therefore m-m^{\prime}=9.05^{1} \text { grammes } . \tag{I}
\end{array}
$$

When the temperature has risen to $25^{\circ} \mathrm{C}$., and the barometric pressure has changed to 75 centimetres, the volume of the larger flask is

$$
13\left(1+\frac{25}{3^{8536}}\right)=13.008 \text { litres, }
$$

and the volume of the smaller flask is

$$
6\left(1+\frac{25}{3^{8} 53^{6}}\right)=6.004 \text { litres } ;
$$

also the mass of one litre of air is

$$
\mathrm{I} \cdot 293 \times \frac{273}{29^{8}} \times \frac{75}{76}=\mathrm{r} \cdot 169 \text { grammes nearly, }
$$

and \therefore the quantity of air displaced by large flask

$$
=13.008 \times 1 \cdot 169=15.206 \text { grammes, }
$$

and the quantity of air displaced by small flask

$$
=6.004 \times r \cdot 169=7.019 \text { grammes. }
$$

Hence the apparent mass of the large flask $=m-15^{\circ} 206$ grammes, and the apparent mass of the small flask $=m^{\prime}-7.019$ grammes.

The apparent mass of the large flask exceeds that of the small flask by $m-m^{\prime}-(15 \cdot 206-7 \cdot 19)=9 \cdot 051-8 \cdot 187=\cdot 86_{4}$ gramme, and $\therefore 864$ gramme must be added to the small flask so as to restore the equilibrium.
(r 3.) A closed vessel displaces 10.5 litres of air, and is equilibrated in a balance by weights whose volume is inconsiderable as compared with that of the vessel. The balance is in equilibrium when the barometer stands at 72 centimetres. If the barometer rise to 76.2 centimetres, the temperature in both cases being $15^{\circ} \mathrm{C}$., what mass must be added to restore the equilibrium?

Answer. '7507 gramme.

(14.) Find the absolute density of dry air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure from the following data, which were obtained by Regnault by his compensation method.

When the globe was filled with dry air at $0^{\circ} \mathrm{C}$. and 76.199 centimetres pressure and 1.487 gramme added, they equilibrated the compensation globe and the counterpoise.

After being placed in melting ice, and exhausted till the pressure of the residual air was 843 centimetre, the globe and its contents, together with $14^{\circ} 151$ grammes, equilibrated the compensation globe and counterpoise.

At $6^{\circ} \mathrm{C}$. and $76^{\circ} 177$ centimetres pressure the globe, when open, weighed 1258.55 grammes.

When it was filled with water at $0^{\circ} \mathrm{C}$., and weighed at $6^{\circ} \mathrm{C}$. and $76 \cdot 177$ centimetres pressure, it weighed 11126.06 grammes.

For a full description of this method see Deschanel's 'Natural Philosophy,' par. 221.

Let $\mathrm{M}=$ mass of the globe in grammes.

$m^{\prime}=$	\quad,
$m=$	$"$
$m^{\prime}=$	$"$

water filling globe at $0^{\circ} \mathrm{C}$. compensating globe. counterpoise.

Let $\mathrm{v}=$ capacity of globe at $0^{\circ} \mathrm{C}$. in cubic centimetres. $d=$ absolute density of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure-i.e. the number of grammes in a cubic centimetre.

To find $v d$, or the quantity of air which fills the globe at $0^{\circ} \mathrm{C}$. and 76 centimetres of pressure, we have the two equations

$$
\left.\begin{array}{l}
\mathrm{m}+\mathrm{v} d \times \frac{76 \cdot \mathrm{II}}{76}+\mathrm{I} \cdot 487=m+m^{\prime} \\
\mathrm{m}+\mathrm{v} d \times \frac{843}{76}+\mathrm{I} 4 \cdot \mathrm{I} 5 \mathrm{I}=m+m^{\prime}
\end{array}\right\}
$$

whence we have $\mathrm{v} d=12.786$ grammes nearly (I).
We have next to find v , i.e., the capacity of the globe at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure. From the second set of weighings we have

The apparent mass of the water in globe

$$
=11126.06-1258.55=9867.51 \text { grammes } .
$$

But the mass of the air displaced by the water filling the globe when it was weighed at $6^{\circ} \mathrm{C}$. and $76 \cdot 177$ centimetres pressure was

$$
12.786 \times \frac{273}{279} \times \frac{76 \cdot 177}{76}=12.54 \text { grammes, }
$$

and the true mass of the water is equal to the apparent mass plus the mass of the air displaced,

$$
\therefore \mathrm{m}^{\prime}=9867^{\circ} 5 \mathrm{I}+\mathrm{I} 2.54=9880^{\circ} 05 \text { grammes. }
$$

Taking the density of water at $4^{\circ} \mathrm{C}$. as unity, that of water at $0^{\circ} \mathrm{C}$. is "999881, and therefore the capacity of the globe at $0^{\circ} \mathrm{C}$. is

$$
\mathrm{v}=\frac{9880 \cdot 05}{9998 \times \mathrm{I}}=988 \mathrm{r} \cdot 2 \text { cubic centımetres. }
$$

But

$$
\mathrm{v} d=\mathrm{1} 2 \cdot 786 \text { grammes. }
$$

\therefore Absolute density of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure is

$$
d=\frac{12 \cdot 786}{9881^{\prime 2}}=\cdot 001294 \text { gramme. }
$$

(15.) Find the density of carbonic acid gas from the following data obtained by Regnault by his compensation method.

When the globe was filled with dry air at $0^{\circ} \mathrm{C}$. and $74^{\circ} 7^{21}$ centimetres pressure, and $1 \cdot 699$ gramme added, they equilibrated the compensation globe and counterpoise.

After being placed in melting ice and exhausted till the pressure of the residual air was 756 centimetre, a mass of 14.1345 grammes had to be added so as to equilibrate the compensation globe and counterpoise. When the globe was filled with carbonic acid gas at $0^{\circ} \mathrm{C}$. and $75^{\circ} 634$ centimetres pressure, the additional mass required was 808 gramine. After exhaustion at $0^{\circ} \mathrm{C}$. till the pressure of the residual gas was ${ }^{171}$ centimetre, the additional mass required was $20^{\circ} 2085$ grammes.

Answer. Density of carbonic acid (air $=1$) $=1.529 \mathrm{I}$.
(16.) In an experiment to determine by Regnault's compensation method the density of dry air a globe was used whose capacity was exactly io litres. When it was filled with dry air at $18^{\circ} \mathrm{C}$. and $75^{\circ} 4$ centimetres pressure, it weighed 12° OI grammes more than it did after so much air had been pumped out that the pressure-gauge only indicated 5 centimetre of mercury pressure. Taking the coefficient of expansion of the glass at $\frac{1}{38700}$, find from the data of this experiment the absolute density of dry air at $\circ^{\circ} \mathrm{C}$. and 76 centimetres pressure.

Answer. oot 298 gramme nearly.
(17.) Find the apparent mass of 4 kilogrammes of gold when weighed (I) in water, and (2) in air, the densities at the temperature of the experiment being respectively

Answers. (1) 3794.4 II grammes ; (2) $4000 \cdot 356$ grammes.
(18.) At a certain place the limits of range of the barometric pressure are from $7 \mathrm{I}^{\circ} 3$ to $78^{\circ} \mathrm{I}$ centimetres of mercury, and the limits of temperature $-19^{\circ} \mathrm{C}$. and $+36^{\circ} \mathrm{C}$. What will be the maximum variation in the apparent mass of a kilogramme of copper, the density of copper at $\circ^{\circ} \mathrm{C}$. being 8.86 and its coefficient of cubical expansion $\frac{1}{1900}$?

Answer. -0408 of a gramme.

THE BOILING POINT AND HYPSOMETRY.

(r.) The position of the top of the mercury column in a delicate thermometer when exposed to the vapour of boiling water was marked $100^{\circ} \mathrm{C}$., the barometric pressure at the time, when reduced to $0^{\circ} \mathrm{C}$., being $74^{\circ} 65$ centimetres. The stem was 30 centimetres long and covered a range of $30^{\circ} \mathrm{C}$. What would be the true position of the boiling point?

The temperature at which a liquid boils is that temperature at which the maximum pressure of the vapour of the liquid is equal to the external pressure upon the liquid. For the position of the mark $100^{\circ} \mathrm{C}$. for the boiling point of water to be correct, the pressure of the atmosphere at the time of the experiment must be equivalent to a barometric column of 76 centimetres at $0^{\circ} \mathrm{C}$.

Let x be the true distance (in centimetres) of the top of the mercury column from the position in the tube where the zero point would be if the thermometer were sufficiently prolonged. Then on referring to a table of vapour pressures we find that the temperature $99.5^{\circ} \mathrm{C}$. corresponds to a maximum vapour pressure of $74^{\circ} 65$ centimetres.

$$
\therefore \frac{x}{100}=\frac{100}{99.5} \therefore x=100.503
$$

Hence the corrected position of the boiling point is 5 millimetres above the indicated one.
(2.) The position of the boiling point of a delicate thermometer was determined when the height of the barometric column was 76.82 centimetres, and each centimetre of the tube corresponded to I° Centigrade of temperature difference. What would be the corrected position of the $100^{\circ} \mathrm{C}$. mark ?

Answer. 3 millimetres below the indicated mark.
(3.) When the position of the boiling point of a certain thermometer was determined and marked, the barometer stood at 73.85 centimetres. The distance between the indicated boiling point and the freezing point was 30 centimetres. How far would the true position of the $100^{\circ} \mathrm{C}$. mark be above the indicated one?

Answer. 2.4 millimetres.
(4.) At the sea-level and when the barometric pressure is equal to 76 centimetres of mercury, water boils at the temperature of $100^{\circ} \mathrm{C}$. At what temperature would water boil at the top of Mont Blanc, where the barometric pressure is $4 \mathrm{r}^{\circ} \eta$ centimetres?

From a table of vapour pressures we find that
At $80^{\circ} \mathrm{C}$. the maximum pressure of aqueous vapour is $35^{\circ} 4643$ centimetres.

At $85^{\circ} \mathrm{C}$. the maximum pressure of aqueous vapour is 43.341 centimetres,
and \therefore the temperature corresponding to a maximum pressure of aqueous vapour equal to $41^{\circ} 7$ centimetres is

$$
80+\frac{5 \times 62.357}{78.767}=80+3^{.958}=84^{\circ} \text { C. nearly. }
$$

(5.) It is an established fact that for small variations of temperature on either side of $100^{\circ} \mathrm{C}$. a difference of pressure of 2.7 centimetres of mercury corresponds to a variation of $1^{\circ} \mathrm{C}$. in the temperature at which ebullition commences. If the annual range of barometric pressure be from 72 to 79 centimetres, what will be the corresponding variation in the temperature at which water boils?

Let $x^{\circ} \mathrm{C}$. be the temperature at which ebullition begins. $d=$ difference of actual pressure from that of 76 centimetres.
Then we have $x=100 \pm \frac{d}{2 \cdot 7}$.
In the present case $d=+3$ and $d=-4$, and

$$
\begin{aligned}
\therefore x_{1} & =100+\frac{3}{2 \cdot 7}=101_{9}{ }^{\circ} \mathrm{C} \\
x_{2} & =100-\frac{4}{2 \cdot 7}=98 \frac{13}{27}^{\circ} \mathrm{C}
\end{aligned}
$$

(6.) Having given that the maximum pressure of aqueous vapour at $34^{\circ} \mathrm{C}$. is $39^{\circ} 565$ millimetres, and at $35^{\circ} \mathrm{C}$. is 4 r .827 millimetres, what will be the temperature at which water will boil under the receiver of an air-pump when the pressure is 40 millimetres? Answer. $34^{\circ} 19^{\circ} \mathrm{C}$.
(7.) Some water is placed in a saucer under the receiver of an air-pump, and the temperature of the air is $0^{\circ} \mathrm{C}$. At what pressure will the water boil?

The maximum pressure of aqueous vapour at $0^{\circ} \mathrm{C}$. is $4^{6} 6$ millimetres of mercury, and this is therefore the pressure at which water boils when at the freezing temperature.
(8.) The steam in a boiler is at the pressure of 30 lbs . to the square inch. What is the temperature of the water?

A pressure of $14^{\circ} 7 \mathrm{lbs}$. to the inch corresponds to 76 centimetres of mercury pressure.
\therefore a pressure of 30 lbs . to the inch corresponds to $\frac{30}{14^{\circ} 7} \times 76$

$=155^{\circ}$ I centimetres.

But for $120^{\circ} \mathrm{C}$. the maximum pressure of aqueous vapour is 149.128 centimetres, and at $125^{\circ} \mathrm{C}$. it is $169^{\circ} \circ 7^{6}$ centimetres, \therefore the temperature required is

$$
\begin{aligned}
120+\frac{5 \times 5.972}{19^{\circ} 94^{8}} & =120+1.497 \\
& =121^{\circ} 5^{\circ} \mathrm{C} . \text { nearly } .
\end{aligned}
$$

(9.) The temperature of the steam in a high-pressure boiler is $150^{\circ} \mathrm{C}$. ; what is the pressure of the steam in pounds per square inch? Answer. $69^{\circ} 27$ lbs. approximately.
(ro.) The temperature of the steam in a locomotive boiler is $170^{\circ} \mathrm{C}$., and the pressure of saturated steam at that temperature is 596 I 66 centimetres of mercury. What is the pressure in pounds per square inch ?

Answer. $115 \% 3 \mathrm{lbs}$. nearly.
(ir.) The temperature at which water boils on the top of the Finsteraarhorn is found to be $86 \cdot \mathrm{I}^{\circ} \mathrm{C}$. Deduce from this the height of the mountain in metres.

If we only require an approximately correct result we may use Soret's formula

$$
\begin{aligned}
h & =295(100-t) \text { metres } \\
& =295(100-86 \cdot \mathrm{r})=295 \times 13.9 \\
& =4100.5 \text { metres } \\
& =4100^{\circ} 5 \times 3^{.2809}=13453 \text { feet. }
\end{aligned}
$$

N.B. The true height is 14,100 feet.
(12.) Find the height of the following places above the sea-level :-

Place
Moscow
Quito
Boiling point of water

Hospice of the St. Gothard
Antisana (South America)
$\left\{\begin{array}{l}\text { Moscow } 967^{\circ} 9 \text { feet } \\ \text { Quito } 9582^{\circ} 2 \quad " \\ \text { St. Gothard } 6872^{\circ} 0^{\prime \prime} \\ \text { Antisana } 13260^{\circ} 0 \text { " }\end{array}\right.$
(13.) By means of the hypsometer the boiling point at the lower of two stations was found to be $99^{\circ} 5^{\circ} \mathrm{C}$., and at the upper one $97^{\circ} \mathrm{C}$. What was the difference of level of the two stations? Answer. 2,420 feet approximately.
N.B. The student must notice that the hypsometer only gives the temperature of the boiling point, and that the atmospheric pressure is deduced from this by referring to a table of vapour pressures. The subsequent computations for obtaining a formula which shall give the height are the same as when a barometer is used.
(14.) The height of the barometric column, reduced to $\circ^{\circ} \mathrm{C}$., was 76 centimetres at the foot of a mountain where the temperature of the air was $18^{\circ} \mathrm{C}$., while at the top of the mountain the corrected height of the barometer was 70 centimetres and the air temperature $12^{\circ} \mathrm{C}$. Find the height.

In order to obtain a general formula for the determination of the height of a mountain by means of barometrical observations, several assumptions have to be made, and the resulting formula is very complicated. For heights up to 1,200 metres the following formula, which is known as Pabinet's, answers fairly well.

$$
x=16000 \frac{\mathrm{H}--h}{\mathrm{H}+h}\left\{1+\frac{2\left(t+t^{\prime}\right)}{1000}\right\} \text { metres }
$$

where H and h are the corrected heights of the barometer at the two stations, and $t t^{\prime}$ are the temperatures of the air in Centigrade degrees.

Substituting the numbers given in the question we find that

$$
x=16000 \times \frac{6}{146}\left\{1+\frac{2 \times 30}{1000}\right\}
$$

$=697$ metres approximately.
(15.) The following observations were made to determine the difference of level of two stations.

Lower station
Barometric height in centimetres Temperature of the air
$73 \cdot 65$
$9.75^{\circ} \mathrm{C}$.

Upper station
71.69

Find the difference of level by Babinet's formula. Answer. 223:3 metres nearly.
(16.) Find the height of Arthur's Seat from the following observations. At Leith pier the height of the barometer was 75° centimetres, and the thermometer $12 \cdot 2^{\circ} \mathrm{C}$. On the summit of Arthur's Seat the barometer indicated $72^{\circ} 9$ centimetres while the thermometer stood at $10^{\circ} \mathrm{I}^{\circ} \mathrm{C}$.

Answer. 248.45 metres approximately.

VAPOUR PRESSURE AND HYGROMETRY.

(r.) A long barometer tube, inverted in a deep mercury trough and supported in a vertical position, contained some dry air which occupied a length of 12 centimetres when the surface of the mercury in the tube was 50 centimetres above that in the trough, the atmospheric pressure being 75 centimetres. A little ether was passed up into the air space, and the tube was depressed until the length occupied by the mixture of air and ether vapour was 12 centimetres. It was then found that the length of the mercury column was 213^{6} centimetres. What was the pressure of the ether vapour?

Since the air occupies the same space in both cases its pressure is the same, and is equal to $75-50=25$ centimetres of mercury pressure. Also the pressure of the mixture is equal to the sum of the pressures of the ether vapour and of the air. Hence if x be the pressure of the ether vapour
$x+25=75-21.36 \therefore x=28.64$ centimetres of mercury.
(2.) A similar experiment was made with dry air, which at first occupied a length of 15 centimetres of the inverted tube while the mercury column was 52 centimetres long, the barometric pressure being 76 centimetres. On introducing a little carbon bisulphide and depressing the tube in the trough until the mixture occupied 15 centimetres, the height of the mercury column in the tube was $3 I^{\circ} 7$ cent1-
metres. The temperature was the same as in the last example, viz. $10^{\circ} \mathrm{C}$. What was the pressure of the vapour? Answer. 20.3 centimetres of mercury.
(3.) Two inverted barometer tubes were placed vertically side by side, and the height of the mercury column in each was observed by the aid of a cathetometer, and found to be $74^{\circ} 3$ centimetres. A few drops of water were passed up into one tube and a few drops of ether into the other, and the height of the mercurial column in the ether tube was then found to be 38.94 centimetres, and in the water tube $73^{\circ} 03$ centimetres, the temperature of the room being $15^{\circ} \mathrm{C}$. Find the pressures of these vapours at this temperature. Answers. Pressure of water vapour $=1.27$ centimetres. ether " $=35.36$ "
(4.) These two tubes were then enclosed according to Dalton's method in a wide glass cistern containing water which was heated to $30^{\circ} \mathrm{C}$., and it was found that the level of the top of the mercury column in the tube containing water vapour had fallen to $7 \mathrm{7} \cdot 84$ centimetres, while that of the mercury in the other tube had fallen to 11.52 centimetres. The laboratory barometer standing at 75 centimetres, find the pressure of saturated ether vapour, and also that of water vapour at $30^{\circ} \mathrm{C}$.

Answers. For ether vapour 63.48 centimetres.
" water " $3^{\circ} 16$ "
(5.) A large glass vessel contains a quantity of dry air at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure, and water is then allowed to enter the vessel until it ceases to evaporate. What is the final pressure of the mixture?

When a liquid is introduced into a confined space which already contains a gas upon which the liquid does not act chemically, as much vapour is formed as if the gas were not present, and the vapour attains to its maximum pressure corresponding to the particular temperature. The gas is then saturated with the vapour, and the actual pressure of the mixture is equal to the pressure which the gas would
exert if it alone occupied the whole space plus the maximum pressure of the vapour corresponding to the temperature of the mixture.

In the present case, the maximum pressure of aqueous vapour at $100^{\circ} \mathrm{C}$. being 76 centimetres of mercury, the pressure of the mixture, expressed in terms of the equivalent mercury column, is

$$
76+76=152 \text { centimetres. }
$$

(6.) A long vertical barometer tube is inverted over mercury and contains a quantity of dry air which, at the temperature of $20^{\circ} \mathrm{C}$., occupies a length of 20 centimetres in the tube, and the level of the mercury in the tube is 56 centimetres above that in the cistern, the laboratory barometer standing at 76 centimetres. A small quantity of water is then passed up into the tube and the mercury column falls to $55^{\circ} \mathrm{I} 3$ centimetres. Find from these data the pressure of aqueous vapour at $20^{\circ} \mathrm{C}$

The original pressure of the dry air is $76-56=20$ centimetres. When the air has become saturated with moisture it occupies a length of 20.87 centimetres, and therefore its final pressure

$$
=20 \times \frac{20}{20.87}=19.12 \text { centimetres. }
$$

But the atmospheric pressure balances the pressure of this air, the pressure of the vapour, and the column of mercury in the tube ; hence, if x be the vapour pressure we have

$$
\begin{aligned}
x+55^{\circ} 13+19 \cdot 12 & =76 \\
\therefore x & =1 \cdot 75 \text { centimetre. }
\end{aligned}
$$

(7.) A similar experiment was then performed with ether vapour. The air initially occupied 18 centimetres of the tube and the height of the mercury column was 58 centimetres, the laboratory barometer standing at 75 centimetres. On introducing a little ether the height of the mercury column became 25.7 centimetres. What was the pressure of the ether vapour? Answer. $43^{.217}$ centimetres.
(8.) A long barometer tube of uniform bore which is inverted over mercury contains at its upper part some dry air which occupies a length of 15 centimetres. The height of the mercury column in the tube is 50 centimetres, the barometric pressure being $74^{\circ} 5$ centimetres. A little alcohol is passed up into the tube, and it is known that at the temperature of the experiment the maximum pressure of alcohol vapour is 7.85 centimetres. What should be the height of the mercury column in the tube?

Let x be the depression of the mercury column in centimetres. Then by the method of Example 6 we find that the final pressure of the air is $24^{\circ} 5 \times \frac{15}{15+x}$ centimetres, and the height of the mercury column is $50-x$ centimetres. Hence we have

$$
7.85+\frac{24.5 \times 15}{15+x}+50-x=74.5
$$

and solving this quadratic equation we obtain

$$
x=3.36 \text { centimetres }
$$

\therefore height of mercury column $=50-x=46.64$ centimetres.
(9.) Three cubic metres of moist air were drawn through a chemical hygrometer, consisting of a series of U tubes containing pumice-stone soaked in strong sulphuric acid, and 34.68 grammes of water were deposited in them, the temperature of the room being $18^{\circ} \mathrm{C}$. Knowing that at $18^{\circ} \mathrm{C}$. the maximum pressure of aqueous vapour is $\mathrm{r}^{\circ} 535$ centimetres of mercury, find from these data the hygrometric state of the air in the room.

The quantity of aqueous vapour actually contained in one cubic centimetre of air is called its absolute humidity. The ratio which this bears to the quantity of aqueous vapour which would be contained in a cubic centimetre if the air were saturated is called the hygrometric state.

Proceeding as in Example 1r, we shall find that the quantity of aqueous vapour which would be contained in the
given volume of air if it were saturated at $18^{\circ} \mathrm{C}$. is $45^{\circ} 94$ grammes approximately,
\therefore the hygrometric state $=\frac{34.68}{45.94}=75$ approximately.
(io.) On another occasion one cubic metre of moist air was drawn through the apparatus and 4.29 grammes of water were collected by the pumice. The maximum pressure of aqueous vapour at the temperature of the room, which was $20^{\circ} \mathrm{C}$., is $\mathrm{I}^{\prime} 739$ centimetres. What was the hygrometric state of the air. Answer. - 25 approximately.
(ir.) Find the quantity of aqueous vapour which is contained in a cubic metre of air which is fully saturated at $20^{\circ} \mathrm{C}$.

A space full of air or any gas which is saturated with vapour contains as much vapour as if there were no air or other gas present.

At the temperature of $20^{\circ} \mathrm{C}$. and $\mathrm{r} \cdot 739$ centimetres of pressure, the quantity of dry air in a cubic'metre is

$$
1293 \times \frac{273}{293} \times \frac{1 \cdot 739}{76} \text { grammes. }
$$

And as the density of aqueous vapour is always $\frac{5}{8}$ ths of the density of dry air at the same temperature and pressure, the required quantity of aqueous vapour is

$$
\frac{5}{8} \times 1293 \times \frac{273}{293} \times \frac{1.739}{76}=17.229 \text { grammes. }
$$

(12.) What quantity of aqueous vapour is contained in the air of a room which is 9 metres long, 6 metres wide, and 4 metres high, the temperature being $15^{\circ} \mathrm{C}$. and the air only half-saturated? The maximum pressure of aqueous vapour at $15^{\circ} \mathrm{C}$. is 1.27 centimetres.

Answer. 1'3824 kilogramme nearly.
N.B. In this example the student must notice that the density of the aqueous vapour is $\frac{5}{16}$ (not $\frac{5}{8}$) that of dry air, because the hygrometric state is $\frac{1}{2}$.
(12.) Find the quantity of aqueous vapour which is con-
tained in a cubic metre of air, the dew-point being at $12^{\circ} \mathrm{C}$., and the maximum pressure of aqueous vapour at $12^{\circ} \mathrm{C}$. being r .046 centimetre.

The 'dew-point' is that temperature at which the air would be fully saturated by the quantity of vapour which it actually contains. Proceeding as in the solution of Example II, we find that the quantity of vapour is

$$
\frac{5}{8} \times 1293 \times \frac{273}{285} \times \frac{1046}{76}=10.654 \text { grammes. }
$$

(14.) The temperature of the air in a laboratory was observed to be $22^{\circ} \mathrm{C}$. and that of the dew-point $13^{\circ} \mathrm{C}$. Knowing that the maximum pressures of aqueous vapour corresponding to these two temperatures are 1.965 and I•I 6 centimetre respectively, find the hygrometric state of the air. Answer. 586 nearly.
(15.) The dew-point is at $12^{\circ} \mathrm{C}$. and the temperature of the air in a room is $\mathrm{I} 7^{\circ} \mathrm{C}$. ; find the hygrometric state of the air, the maximum pressure of aqueous vapour at these temperatures being $\mathrm{I} \cdot 046$ and $\mathrm{r} \cdot 44^{2}$ centimetre respectively. Answer. 74 nearly.
N.B. The student should notice that the dampness of the air does not depend upon the quantity of water vapour actually contained in a given volume of the air, but upon the ratio which this quantity bears to the quantity which would be required in order to saturate the air at the particular temperature.
(16.) A closed inextensible glass vessel contains a quantity of air at the temperature of $12^{\circ} \mathrm{C}$., the hygrometric state of which is 72 . What will be the hygrometric state of the air if its temperature be raised to $30^{\circ} \mathrm{C}$., the maximum pressure of aqueous vapour at $30^{\circ} \mathrm{C}$. being $3^{\cdot 16}$ centimetres? Answer. 24 nearly.
(17.) The air in a room is at the temperature of $25^{\circ} \mathrm{C}$. and its hygrometric state is 8 . Assuming that the maximum pressure of aqueous vapour at $25^{\circ} \mathrm{C}$. is 2.36 and at
$5^{\circ} \mathrm{C}$. is. 65 centimetre of mercury, find the quantity of vapour per cubic metre that will be deposited if the temperature fall to $5^{\circ} \mathrm{C}$.

Let $m=$ number of grammes of water vapour per cubic metre of air at $25^{\circ} \mathrm{C}$.
$m^{\prime}=$ number of grammes of water vapour per cubic metre of air saturated at $5^{\circ} \mathrm{C}$. ;
then $m=8 \times \frac{5}{8} \times 1293 \times \frac{2.36}{76} \times \frac{273}{298}=18.39$ grammes.

$$
m^{\prime}=\frac{5}{8} \times 1293 \times \frac{.65}{7^{6}} \times \frac{273}{278}=6.79 \text { grammes nearly }
$$

And the quantity of aqueous vapour per cubic metre which is deposited in the form of dew is

$$
m-m^{\prime}=18.39-6.79=11.6 \text { grammes. }
$$

(18.) Assuming that a portion of the atmosphere, 1,000 feet high, and extending over a space of I mile square, is at a uniform temperature of $20^{\circ} \mathrm{C}$., and is fully saturated with vapour, how much rain will be deposited from this when the temperature falls to $10^{\circ} \mathrm{C}$., the maximum pressure of aqueous vapour at $20^{\circ} \mathrm{C}$. being $\mathrm{r}^{\circ} 74$ centimetre and at $10^{\circ} \mathrm{C}$. being ${ }^{\circ} 92$ centimetre ? Answer. 606 r .64 tons.
N.B. One cubic foot $=28.316$ litres.

One ton $=1.01605 \times 10^{6}$ grammes.
(Ig.) If instead of the air being saturated with vapour its dew-point had been at $15^{\circ} \mathrm{C}$. while the temperature was $20^{\circ} \mathrm{C}$., what would have been the quantity of rain, the maximum pressure of aqueous vapour at $15^{\circ} \mathrm{C}$. being 1.27 centimetre?

Answer. $2613^{.6}$ tons.
(20.) When the temperature of the room is at $16^{\circ} \mathrm{C}$. and the barometric pressure 76.2 centimetres, 2.5 grammes of air saturated with moisture are measured off, and it is required to know how much dry air there is in this, the maximum pressure of aqueous vapour at $16^{\circ} \mathrm{C}$. being $\mathrm{I}^{\circ} 353$ centimetre of mercury. .

Let $\mathrm{v}=$ number of litres in the mixture of air and water vapour.
$x=$ number of grammes of water vapour in the mixture.
Then $x=\frac{5}{8} \times \mathrm{v} \times 1.293 \times \frac{1.353}{76} \times \frac{273}{289}$ grammes.
And as the pressure of the air is $76.2-1.353=74.847$ centimetres, the mass of dry air is

$$
\begin{equation*}
2.5-x=\mathrm{v} \times 1.293 \times \frac{74.847}{76} \times \frac{273}{289} \text { grammes } . \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain by division

$$
\begin{aligned}
& \frac{2.5-x}{x}={ }^{2} 4.847 \times \frac{8}{5}=88.51 \mathrm{II} \\
& \text { whence } x={ }^{\circ} \mathrm{o} 278 \text { gramme }
\end{aligned}
$$

\therefore mass of dry air $=2.5-{ }^{\circ} 0278=2.4722$ grammes.
(2I.) A quantity of gas saturated with moisture was collected over mercury in a vertical glass tube. The gas occupied 260 c.c.s, and the upper level of the mercury was 53.3 centimetres above the mercury in the trough. The laboratory barometer indicated $75^{\circ} 4$ centimetres of pressure, and the temperature was $13^{\circ} \mathrm{C}$. The maximum pressure of aqueous vapour at $13^{\circ} \mathrm{C}$. being $1 \cdot 116$ centimetre, find the volume of dry air reduced to what it would be at $\circ^{\circ} \mathrm{C}$. and 76 centimetres of pressure. Answer. 68.52 c.c.s.
(22.) A quantity of moist gas was collected in a bell-glass over a water pneumatic trough. Find from the following data the volume of dry gas at standard pressure and temperature.

Observed volume of moist gas . $=230 \mathrm{c} . \mathrm{c}$.
$\left.\begin{array}{l}\text { Barometric pressure, corrected and } \\ \text { reduced. }\end{array}\right\}=74^{\circ 2}$ centimetres.
Height of water column
$=16.0 \quad "$
Maximum pressure of aqueous
vapour at $15^{\circ} \mathrm{C}$. . . $\}=1.27$ "
Temperature of room . . . $=15^{\circ} \mathrm{C}$.
Density of water at $15^{\circ} \mathrm{C}$. . $=99915$.

The height of the mercury column, the pressure of which at $0^{\circ} \mathrm{C}$. is equal to that of the water column, is

$$
\frac{16 \times \cdot 99915}{13.596}=1 \cdot 176 \text { centimetre, }
$$

and therefore the pressure due to the gas alone is
$74^{\circ} 2-\left(1^{\circ} 176+1^{\circ} \cdot 27\right)=71^{\circ} 754$ centimetres.
Hence the volume of the dry gas when reduced to standard pressure and temperature is

$$
230 \times \frac{71.754}{76} \times \frac{273}{288}=205.84 \text { c.c. }
$$

(23.) From the following data calculate the volume of dry gas at the standard pressure and temperature.

Observed volume of moist gas $\quad=137^{\circ} \mathbf{2}$ c.c.
$\left.\begin{array}{c}\text { Height of mercury in tube above } \\ \text { that in the trough . . . }\end{array}\right\}=14^{\prime} 75$ centimetres.
Height of the barometer . . $=73.85$
Maximum pressure of aqueous
vapour at $15^{\circ} \mathrm{C}$. . . $\}$
Temperature of room . . $=15^{\circ} \mathrm{C}$.
Answer. 98.96 c.c.
(24.) When the barometer stood at $75^{\circ} 4$ centimetres, and the thermometer at $13^{\circ} \mathrm{C}$., a quantity of gas saturated with moisture was collected over mercury and found to occupy 360 c.c. The level of the mercury in the tube being 44 centimetres above that in the trough, and the maximum pressure of aqueous vapour at $13^{\circ} \mathrm{C}$. being $\mathrm{I}^{\wedge} 116$ centimetres, what was the volume of dry gas when reduced to standard pressure and temperature?

Answer. 536.93 c.c.
Note.-When gases are collected in this way their hygrometric state hardly ever corresponds to that of complete saturation, and as it is practically impossible to determine its actual value, it is best to insure saturation by passing a few drops of water up tue tube by means of a curved pipette.

Or we may allow for the humidity by remembering that in practice the densities of liquids are generally determined at temperatures which range between $15^{\circ} \mathrm{C}$. and $20^{\circ} \mathrm{C}$., and that the pressure due to the aqueous vapour never amounts to more than a few millimetres, so that we may take it at half that corresponding to $15^{\circ} \mathrm{C}$. or $20^{\circ} \mathrm{C}$., that is to say, at 6_{3} or 87 of a centimetre.
(25.) What percentage of error would occur in the result of the last example if the correction for the humidity of the gas were neglected ?

The pressure of the gas would be $74^{\circ} 5-44=30^{\circ} 5$ centimetres, and the reduced volume of the air would be

$$
360 \times \frac{30.5}{76} \times \frac{273}{286}=137.9 \text { I c.c. nearly }
$$

and therefore the error $=137.9 \mathrm{r}-136.93=98$ c.c.

$$
\therefore \text { percentage error }=\frac{98}{1_{3} 6.93}=007157
$$

$=72$ per cent. nearly.
(26.) A room contains 64 cubic metres of dry air at 8° C., and a barometric pressure of 76 centimetres. If 500 grammes of water are allowed to evaporate into the air, what will be the pressure of the vapour?

Let x be the pressure expressed in centimetres of mercury ; then, since the 500 grammes of water-vapour occupy 64 cubic metres at $8^{\circ} \mathrm{C}$., we have

$$
\begin{gathered}
500=\frac{5}{8} \times 64 \times 1293 \times \frac{273}{281} \times \frac{x}{76}, \\
\text { whence } x={ }^{7} 75 \text { centimetre }
\end{gathered}
$$

(27.) What would be the hygrometric state of the air in this room, the maximum pressure of aqueous vapour at 8° C. being 802 centimetre?

The hygrometric state being equal to the ratio of the actual pressure of the aqueous vapour in the arr to the pressure which would exist if the air were saturated, is

$$
\frac{756}{802}=942
$$

(28.) A cubic metre of air at $5^{\circ} \mathrm{C}$. and 76 centimetres of pressure is in contact with water, and is heated up to 25° C. at constant pressure, so that it is saturated with moisture at both temperatures. The maximum pressure of aqueous vapour at $5^{\circ} \mathrm{C}$. and $25^{\circ} \mathrm{C}$. being ${ }^{\circ} 65$ centimetre and 2.3^{6} centimetres respectively, find the space occupied by the moisture.

When reduced to standard pressure and temperature the cubic metre of moist air at $5^{\circ} \mathrm{C}$. would occupy a space

$$
\mathrm{v}=\frac{76-.65}{7^{6}} \times \frac{273}{278}=\frac{75.35}{76} \times \frac{273}{278} \text { cubic metre. }
$$

But the pressure of the air at $25^{\circ} \mathrm{C}$. would be $76-2.36$ $=73^{\circ} 64$ centimetres, and therefore the space occupied by the volume v of dry air when saturated with moisture at $25^{\circ} \mathrm{C}$. would be
$v \times \frac{76}{73.64} \times \frac{298}{273}=\frac{75.35}{73.64} \times \frac{298}{278}=1.0968$ cubic metre.
(29.) A cubic metre of dry air at $50^{\circ} \mathrm{C}$. and 76 centimetres of pressure is saturated with moisture. The pressure of aqueous vapour at $50^{\circ} \mathrm{C}$. being $9^{\circ 2}$ centimetres, find the space occupied by the moist air at the above temperature and pressure. Answer. I‘I 377 of a cubic metre.
(30.) Four cubic metres of dry air at $15^{\circ} \mathrm{C}$. and $76^{\circ} 2$ centimetres pressure absorb moisture to such an extent that the hygrometric state becomes 6_{3}. What space will the moist air occupy at the same pressure and temperature, the maximum pressure of aqueous vapour at $15^{\circ} \mathrm{C}$. being 1.27 centimetre?

The pressure of the aqueous vapour $=63 \times 1 \cdot 27=8$ centimetre nearly.
\therefore pressure of air $=76.2-8=75^{\circ} 4$ centimetres.
\therefore new volume $=4 \times \frac{76.2}{75^{\circ}}=4.042$ cubic metres.
(3r.) What quantity of aqueous vapour must be added to a metre of dry air at $25^{\circ} \mathrm{C}$. and 74 centimetres pressure
so as to produce a hygrometric state of 75 , the maximum pressure of aqueous vapour at $25^{\circ} \mathrm{C}$. being $2^{\prime} 36$ centimetres?

By the method of Example 30, we find that the pressure of the aqueous vapour is 177 centimetre, and that the space occupied by the moist air is $1024^{\circ} 5$ litres. Hence the quantity of water absorbed by the air is

$$
\frac{5}{8} \times 1024.5 \times 1.293 \times \frac{1.77}{76} \times \frac{273}{298}=17.664 \text { grammes. }
$$

(32.) Supposing that on a fine evening and with a clear sky the radiation from the grass cools it down to $7^{\circ} \mathrm{C}$. below that of the surrounding air, which is at the temperature ot $14^{\circ} \mathrm{C}$., what must be the hygrometric state of the air for there to be a deposition of dew? The maximum pressure of aqueous vapour at $14^{\circ} \mathrm{C}$. is $I^{\cdot} 19$ centimetre of mercury, and at $7^{\circ} \mathrm{C}$. it is 749 centimetre.

Answer. The hygrometric state $=\frac{749}{I^{\prime} 19}=63$ nearly.
(33.) A barometer tube which is inverted over mercury is surrounded by a hot-air jacket which keeps the mercury in the tube at the temperature of $200^{\circ} \mathrm{C}$. The height of the mercury column in the tube is 76.68 centimetres, and the barometric pressure outside is 76 centimetres. What is the pressure of mercury vapour at $200^{\circ} \mathrm{C}$. ?

The column of mercury which, at $0^{\circ} \mathrm{C}$., is equivalent to the column of mercury in the tube, is $\frac{76.68 \times 555^{\circ}}{575^{\circ}}=74^{\circ}$ ㅇI centimetres nearly.
\therefore pressure of mercury vapour $=76-74^{\circ} 01=1.99$ centimetre.
(34.) In another experiment the external pressure was $75^{\circ} 21$ centimetres, and the jacket surrounding the tube was kept at $100^{\circ} \mathrm{C}$., when the height of the mercury column was 76.49 centimetres. Find from this experiment the pressure of mercury vapour at $100^{\circ} \mathrm{C}$.

Answer. © 074 centimetre.
(35.) The mercury in a barometer stands at $75^{\circ} 2$ centimetres when the temperature is $25^{\circ} \mathrm{C}$. Taking the density of mercury at $0^{\circ} \mathrm{C}$. at 13.59^{6} and that of water at $25^{\circ} \mathrm{C}$. equal to 997 , and the maximum pressure of aqueous vapour at $25^{\circ} \mathrm{C}$. equal to 2.355 centimetres of mercurj; find the corresponding height of a water barometer.

The barometric column reduced to $0^{\circ} \mathrm{C}$. is $\frac{75^{\circ} 2}{1+\frac{25}{555^{\circ}}}$
$=74.86_{3}$ centimetres, and if x be the height in centimetres of the water column at $25^{\circ} \mathrm{C}$. the equivalent mercury column at $0^{\circ} \mathrm{C}$. is

$$
\frac{x}{997 \times 13.596}=\frac{x}{13.555} \text { centimetres; }
$$

And $\therefore \frac{x}{13.555}+2.355=74.863$;
Whence $x=982.86$ centimetres.
(36.) The internal section of a long barometer tube is 1 square centimetre, and the tube contains water vapour which, at $13^{\circ} \mathrm{C}$., occupies 80 centimetres of the tube, and the top of the mercury column is $75^{\circ} 26$ centimetres above the surface of the nercury in the cistern. The barometric pressure of the air is 76 centimetres. The cistern, which is connected to the barometer by flexible tubing, is then raised until the vapour occupies only 20 centimetres in the tube. How much will have been condensed ?

The pressure of the vapour in the tube at the beginning is $76-75 \cdot 26=74$ centmetre, and therefore the quantity of aqueous vapour contained in the tube at first is

$$
\frac{5}{8} \times 80 \times \cdot 001293 \times \frac{74}{76} \times \frac{273}{286}=\cdot 006 \text { gramme nearly }
$$

But the maximum pressure of aqueous vapour at $13^{\circ} \mathrm{C}$. is r'in centimetre, and therefore when the vapour occupies
only 20 c.c. of the tube the quantity which would saturate this space is

$$
\frac{5}{8} \times 20 \times 001293 \times \frac{1 \cdot 116}{76} \times \frac{273}{286}=002 \text { gramme nearly. }
$$

\therefore quantity of vapour condensed is $006-002=.004$ gramme.

DENSITY OF VAPOURS.

(I.) It is found by experiment that a given quantity of steam at $100^{\circ} \mathrm{C}$. and 76 centimetres of barometric pressure occupies about 1,700 times as much space as an equal quantity of water at $0^{\circ} \mathrm{C}$.; and it is also found that dry air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure occupies about 770 times as much room as an equal quantity of water at $0^{\circ} \mathrm{C}$. From these data calculate the ratio of the density of steam to that of air at $100^{\circ} \mathrm{C}$. and 76 centimetres of pressure.

For an increase of temperature of $\mathrm{I}^{\circ} \mathrm{C}$. the expansion of water is $\frac{1}{273}$ rd of its bulk at the lower temperature, and therefore
$\frac{\text { Density of air at } 100^{\circ} \mathrm{C} .}{\text { Density of air at } 0^{\circ} \mathrm{C} .}=\frac{\mathrm{I}}{\mathrm{I}+\frac{\mathrm{I} 100}{273}}=\frac{273}{373}$
But by the question
$\frac{\text { Density of steam at } 100^{\circ} \mathrm{C} .}{\text { Density of water at } 0^{\circ} \mathrm{C} .}=\frac{\mathrm{I}}{1700}$
and
Density of air at $\circ^{\circ} \mathrm{C}$. and 76 centimetres pressure
Density of water at $0^{\circ} \mathrm{C}$.

$$
\begin{equation*}
=\frac{1}{770} . \tag{3}
\end{equation*}
$$

Combining the relations (1), (2), and (3) we find that
Density of steam at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure $=$ Density of air at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure

$$
=\frac{770}{1700} \times \frac{373}{273}=66 \text { nearly }
$$

N.B. In practice it is always assumed that the density of water vapour is always $\frac{5}{8}$ ths that of dry air under the same conditions of temperature and pressure.
(2.) If steam which is still in contact with water be heated up to $130^{\circ} \mathrm{C}$. its pressure becomes equal to that of 203 centimetres of mercury. What is the density of saturated steam at $130^{\circ} \mathrm{C}$. ?

The density required $=\frac{5}{8} \times 001293 \times \frac{203}{76} \times \frac{273}{403}$
$={ }^{\circ} 0014622$ gramme.
(3.) What is the density of saturated aqueous vapour at $40^{\circ} \mathrm{C}$., the maximum pressure at that temperature being equal to $5 \% 49$ centimetres of mercury ?

Answer. 00005 gramme approximately.
(4.) What is the mass of a cubic metre of steam at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure? Answer. 59 1 $^{\circ} 47$ grammes.
(5.) Find the quantity of aqueous vapour in a cubic metre which is saturated at $25^{\circ} \mathrm{C}$., the maximum pressure at that temperature being 2.36 centimetres.

Answer. 22.989 grammes.
(6.) Find the quantity of saturated steam in a cubic metre at $120^{\circ} \mathrm{C}$., the maximum pressure at that temperature being $149^{\circ} 13$ centimetres.

Anszer. 1ror'54 grammes nearly.
(7.) A cubic centimetre of water at $100^{\circ} \mathrm{C}$. and 76 centimetres of barometric pressure is converted into steam at $100^{\circ} \mathrm{C}$. What space will it occupy ?

At $100^{\circ} \mathrm{C}$. and 76 centimetres pressure one gramme of dry air occupies $\quad \frac{1}{001293} \times \frac{373}{273}$ c.c.
and as the density of steam is always $\frac{5}{8}$ that of air under the same conditions of temperature and pressure, the space occupied by one gramme of steam at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure is

$$
\frac{8}{5} \times \frac{1}{.001293} \times \frac{373}{273}=1690 \% 7 \mathrm{c} . \mathrm{c} .
$$

The student will notice from this result that the common saying that 'a cubic inch of water becomes a cubic foot of steam,' is only a very rough approximation.
(8.) One litre of oxygen and two litres of hydrogen when combined produce two litres of steam at the same temperature and pressure. Deduce from this the density of steam with respect to air.

Referring to Examples in I I2, I3, p. 68, we find that the quantity of the mixed gases is 1.6092 gramme and that the quantity of air in 2 litres is 2.586 grammes.
$\therefore \frac{\text { Density of steam }}{\text { Density of air }}=\frac{1 \cdot 609^{2}}{2.586}=62$ nearly.
(9.) Find the vapour density of bisulphide of carbon, taking that of hydrogen as unity, from the following experimental data.

Capacity of the flask at $0^{\circ} \mathrm{C}$. . $=625$ c.c.
At $18^{\circ} \mathrm{C}$. and 76.3 centimetres pressure the flask filled with dry air $\} 107^{\top} 13$ grammes. weighed
At $90^{\circ} \mathrm{C}$. and 76.2 centimetres pres-
sure the flask filled with the vapour $\} 107.983$ " weighed
The coefficient of expansion of the glass $=\frac{1}{3^{8700}}$.
Solution.-The capacity of the flask at $18^{\circ} \mathrm{C} .=$ $625 \times\left(1+\frac{18}{38700}\right)=625.29$ c.c.
\therefore the quantity of air contained in the flask at $18^{\circ} \mathrm{C}$. and 76.3 centimetres barometric pressure is
$625.29 \times 001293 \times \frac{76.3}{76} \times \frac{273}{291}={ }^{7} 615$ gramme.
\therefore mass of the empty flask $=107 \cdot 13-{ }^{\circ} 7615=106 \cdot 3685$ grammes.
\therefore the quantity of bisulphide of carbon vapour which fills the flask at $90^{\circ} \mathrm{C}$. and 76.2 centimetres pressure is

$$
107 \cdot 983-106 \cdot 3685=1 \cdot 6145 \text { grammes. }
$$

But the capacity of the flask at $90^{\circ} \mathrm{C}$. is

$$
625\left(1+\frac{90}{38700}\right)=626.45 \text { c.c. }
$$

\therefore the quantity of hydrogen which would fill the flask at $90^{\circ} \mathrm{C}$. and $76^{\circ} 2$ centimetres pressure is

$$
626.45 \times \cdot 0000896 \times \frac{76 \cdot 2}{76} \times \frac{{ }^{2} 73}{363}=\cdot 0423 \text { gramme }
$$

\therefore density of bisulphide of carbon vapour with respect to that of hydrogen is $\frac{I^{\circ} 6145}{.04^{2} 3}=38 \cdot 168$.
(10.) What would be the relative density (air $=1$) of the bisulphide of carbon vapour?

$$
\text { Answer. } \frac{1 \cdot 6145}{\cdot 6108}=2 \cdot 643
$$

(ir.) Find the density of alcohol vapour with reference to hydrogen from the following experimental data.

Capacity of the flask at $0^{\circ} \mathrm{C}$. . $=520 \mathrm{c} . \mathrm{c}$.
Weight of flask filled with dry air $\left.\begin{array}{l}\text { at } 12^{\circ} \mathrm{C} \text {. and } 75^{\circ} 2 \text { centimetres } \\ \text { pressure . }\end{array}\right\}=75^{\circ} 77 \mathrm{I}$ grammes.
Weight of flask filled with alcohol $\left.\begin{array}{l}\text { vapour and sealed at } 168^{\circ} \mathrm{C} \text {. and } \\ 75^{\circ} 8 \text { centimetres pressure . }\end{array}\right\}=75^{\circ} 8$ grammes.
Coefficient of expansion of the flask $=\frac{1}{38700}$ Answer. 2.375 .
(12.) Find the absolute density of camphor vapour from the following data obtained experimentally by Dumas,
$\left.\begin{array}{c}\text { Temperature of the vapour when } \\ \text { the flask was hermetically sealed }\end{array}\right\}=244^{\circ} \mathrm{C}$.
Temperature of the air . . . $=13.5^{\circ} \mathrm{C}$.
Barometric pressure $=74^{\circ} 2$ centimetres.
Increase in weight of flask. . . $=0.708$ gramme.
Capacity of flask at $13.5^{\circ} \mathrm{C}$. . $=295$ c.c.
Answer. -0023857 gramme.
(13.) Find the density of camphor vapour at $244^{\circ} \mathrm{C}$. with respect to hydrogen at the same temperature and pressure.

Answer. 51•648.
(14.) What will be the density of camphor vapour with respect to air at the same temperature and pressure ?

Answer. 3.579 .
(15.) Determine the absolute density of ether vapour from the following experimental data.

Weight of flask full of dry air at
$\left.\begin{array}{l}12^{\circ} \mathrm{C} \text {. and } 76 \cdot 2 \text { centimetres } \\ \text { pressure }\end{array}\right\}=68 \cdot 3$ grammes.
Weight of flask filled with ether vapour and sealed at $65^{\circ} \mathrm{C}$. and 76° I centimetres pressure . . $\}$
Capacity of the glass flask at $\circ^{\circ} \mathrm{C} .=560$ c.c.
Coefficient of expansion $=\frac{1}{3853^{6}}$
Answer. -0026912 gramme.
(16.) Find the density of ether vapour with respect to air at the same temperature and pressure as in the last example. Answer. 2.5734.
(17.) Find the absolute density of the vapour of iodine from the following experimental data obtained by Dumas's method.

Weight of empty flask $\quad . \quad .=45^{\circ} 5$ grammes.
Weight of flask filled with iodine
vapour and sealed at $200^{\circ} \mathrm{C}$. and
76 centimetres pressure . . .
Capacity of the flask at $0^{\circ} \mathrm{C}$. . . $=300 \mathrm{c} . \mathrm{c}$.
Coefficient of expansion $=\frac{1}{38700}$
Answer. 0065097 gramme.
(18.) What would be the density with reference to that of air at the same temperature and pressure ?

$$
\text { Answer. } 8 \cdot 7244 .
$$

(19.) What would have been the density, taking that of hydrogen at the same temperature and pressure as unity? Answer. $125 \% 8$.
(20.) Calculate the value of the vapour density of a substance with respect to that of air as unity from the following data, which were obtained experimentally by the method of Gay Lussac.
$\left.\begin{array}{l}\text { Quantity of the substance in the } \\ \text { small glass bulb }\end{array}\right\}=447$ gramme.
Observed volume of its vapour . . =120 c.c.
Corrected height of barometer . . $=76 \cdot 2$ centimetres.
$\left.\begin{array}{l}\text { Difference of level of mercury } \\ \text { inside and outside the tube }\end{array}\right\}=6$
Height of oil column $=17$ "
Temperature of oil-bath . . . $=200^{\circ} \mathrm{C}$.
Density of the oil $=808$.
The pressure of the oil column when expressed in terms of the equivalent column of mercury at $0^{\circ} \mathrm{C}$. is

$$
\frac{17 \times \cdot 808}{13.59^{6}}=10 \cdot 1 \text { centimetres. }
$$

And the mercury column in the tube, which is at $200^{\circ} \mathrm{C}$. when corrected for temperature, is

$$
\frac{6}{1+\frac{200}{555^{\circ}}}=5.79 \text { centimetres. }
$$

\therefore pressure of the vapour $=76 \cdot 2+10^{\circ} 1-5^{\circ} 79=80^{\circ} 51$ centimetres.

But at this pressure and temperature the quantity of air which would occupy I 20 c.c. is
$120 \times \cdot 001293 \times \frac{80 \cdot 51}{76} \times \frac{273}{473}=.0949$ gramme nearly.
\therefore Density of the vapour (air $=1$) is $\frac{447}{.0949}=4.71$.
N.B. The elastic force of mercury vapour at $200^{\circ} \mathrm{C}$. is r 99 centimetre, and therefore a correction should be applied for this which would make the pressure of the vapour

$$
80 \cdot 5 \mathbf{1}-\mathrm{I} \cdot 99=78 \cdot 52 \text { centimetres },
$$

and this would make the vapour density with reference to that of air as unity equal to

$$
4: 83 \text { nearly. }
$$

(2 1.) A wide glass tube which was graduated at $0^{\circ} \mathrm{C}$. was filled with mercury and then inverted over a mercury bath. One gramme of ether was then passed up into the Torricellian vacuum and the tube was surrounded by a water bath according to the method of Gay Lussac, and the temperature was raised to $85^{\circ} \mathrm{C}$. It was then found that the vapour occupied 487.64 c.c. according to the graduation of the tube, and that the difference of level of the mercury in the tube and in the bath was 14.3 centimetres. The corrected barometric height was $75^{\circ} 4$ centimetres. Find the density of ether vapour with respect to air.

Since the glass was correctly graduated at $0^{\circ} \mathrm{C}$. the true volume of the vapour at $85^{\circ} \mathrm{C}$. is

$$
487 \cdot 64\left(1+\frac{85}{3^{8700}}\right)=488 \cdot 7 \text { I с.c. }
$$

and then, proceeding as in Example 20, we find that the relative density (air $=1$) is 2.57 .
(22.) Find the density $(H=1)$ of the vapour of ether from the following data, which were obtained by Hofmann's modification of Gay Lussac's method.
Quantity of ether taken . . . $={ }^{2} 73$ gramme.
Space occupied by its vapour . $=150$ c.c.
Temperature of the vapour . . $=100^{\circ} \mathrm{C}$.
Height of mercury in the tube $=18.3^{2}$ centimetres.
Barometric height reduced to $0^{\circ} \mathrm{C}=75$
The principle of Hofmann's method is precisely the same as in that of Gay Lussac, so that, proceeding as in the solution of Example 20, we find that the density of ether vapour $(\mathrm{H}=1)$ is $\frac{273}{0073^{8}}=37$ nearly.
(23.) What would have been the density, taking that of air as unity ? Answer. 2.565 nearly.
N.B. The pressure of mercury vapour at $100^{\circ} \mathrm{C}$. may be neglected, as it is only 075 of a centimetre.
(24.) Find the relative density ($\mathrm{air}=\mathrm{I}$) of the vapour of bisulphide of carbon from the following data of an experiment according to Hofmann's method.
Quantity of bisulphide of carbon used $=\quad \circ 74$ gramme. Space in tube occupied by the vapour $=68.4$ c.c.
Temperature of the vapour . . . $=20^{\circ} \mathrm{C}$.
Barometric pressure reduced to $0^{\circ} \mathrm{C} .=74$ centimetres.
Height of mercury column in tube $=45^{\circ} 7$ "
Answer. 2.39 nearly.
(25.) What would be the relative density taking that of hydrogen as unity?

Answer. $34^{\circ} 6$.
N.B. This was an impure sample, and probably contained a little water.
(26.) Find the density of chloroform vapour (air = 1) from the following data of an experiment according to Hofmann's method.

Quantity of chloroform taken . . $={ }^{0} 096$ gramme.
Space in tube occupied by its vapour $=60$ c.c.
Temperature of the vapour . . $=30^{\circ} \mathrm{C}$.
Barometric pressure reduced to $0^{\circ} \mathrm{C}$. $=75^{\circ} 2$ centimetres.
Height of mercury column in tube $=50.67$
Answer. 4.21 nearly.
(27.) What is the absolute density of the chloroform vapour, i.e. the mass of one cubic centimetre, at the above temperature and pressure? Answer. ©oi6 gramme.
(28.) What is the relative density taking that of hydrogen as unity?

Answer. $60^{\circ} 74$ nearly.
Note.-The student should notice that Gay Lussac's method is the reverse of Dumas's. In the latter we find tie mass of a known bulk of vapour, while in the former we find the bulk of a given mass of vapour. Gay Lussac's method is only available for substances which are easily volatilised, whereas Dumas's method, though more complicated, is available for all.

LATENT HEAT OF VAPOUR.

(r.) Some water was heated under pressure (in a Papin's digester) to the temperature of $207^{\circ} \mathrm{C}$. and the valve was then opened, when part of the water rushed out in the form of steam, and the temperature of the remainder sank to 100° C. It was then found that one-fifth of the water had escaped as stean. Deduce from this experiment the value of the latent heat of steam.

Latent heat is the quantity of heat which must be communicated to a body in a given state in order to convert it into another state without changing its temperature.

The unit quantity of heat is that quantity which, if applied to unit of mass of water at some standard temperature, will raise that water one degree in temperature. The
standard temperature is generally $4^{\circ} \mathrm{C}$., i.e. that at which water has its maximum density.

Let x be the number of units of heat or the number of grammes of water which would be heated from $4^{\circ} \mathrm{C}$. to $5^{\circ} \mathrm{C}$. by the heat required to convert one gramme of water at $100^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. Then x is the latent heat of steam at $100^{\circ} \mathrm{C}$.

Also let m be the total quantity of water and steam in grammes.

Since the temperature of the whole mass falls from 207° to $100^{\circ} \mathrm{C}$., the quantity of heat liberated is

$$
107 \times m \text { heat units ; }
$$

and in the conversion of $\frac{m}{5}$ grammes of water at $100^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. the quantity of heat absorbed is

$$
\frac{m}{5} \times x \text { heat units. }
$$

Assuming that during this process no heat is lost to or gained from external objects, these two quantities of heat must be equal.

$$
\begin{gathered}
\therefore \frac{m}{5} \times x=107 \times m ; \\
\therefore x=107 \times 5=535 \text { units. }
\end{gathered}
$$

(2.) A shallow vessel containing some water at $10^{\circ} \mathrm{C}$. was placed over a burner, and in four minutes its temperature rose to $100^{\circ} \mathrm{C}$. and it began to boil, and in 24 minutes more the whole had boiled away. Calculate from these data the latent heat of steam.

Let m be the mumber of grammes of water ; then in one minute it absorbed $\frac{m \times 90}{4}=m \times 22^{\circ} 5$ heat units.

And \therefore it absorbed $m \times 22.5 \times 24=m \times 540$ heat units in 24 minutes.

But this was the quantity of heat which was required to
turn m grammes of water at $100^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$., and therefore the latent heat of steam is 540 heat units.
(3.) A small quantity of water at $155^{\circ} \mathrm{C}$. is placed in an evaporating dish, which is covered by a glass plate which has a small hole in it. The flame of a gas-burner causes the water to begin boiling in 3 minutes and 20 seconds, and the whole of the water is evaporated after 21 minutes more have elapsed. Find from these data the latent heat of steam. Answer. 532 heat units nearly.
(4.) A Papin's digester contains 5 kilogrammes of water at $150^{\circ} \mathrm{C}$. When the valve is opened a quantity of the water is immediately converted into steam, and the temperature of the rest of the water falls to $100^{\circ} \mathrm{C}$. Assuming that the latent heat of steam is 537 units, find the quantity of steam produced.

Let x be the number of grammes of steam produced; then, as the final temperature of the steam and water is 100° C., the quantity of heat yielded up by the mass as its temperature falls is

$$
5000 \times 50=250000 \text { heat units. }
$$

But this heat has been absorbed in converting x grammes of water at $100^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. ; and therefore, assuming that there was no loss or gain of heat from without,

$$
\begin{gathered}
x \times 537=250000 \\
\therefore x=\frac{250000}{537}=465.55 \text { grammes. }
\end{gathered}
$$

(5.) A Marcet's boiler contains a kilogramme of water which is at the temperature of $123^{\circ} \mathrm{C}$. If the stopcock be opened, what quantity of steam will be produced?

$$
\text { Answer. } 42.83 \text { grammes. }
$$

(6.) By keeping some water perfectly still in a vessel lined with shell-lac it was raised to $105^{\circ} \mathrm{C}$., and then ebullition took place in bursts, each burst causing the temperature
to fall to $100^{\circ} \mathrm{C}$. What fraction of the water was converted into steam at each burst ?

Let $x=$ number of grammes of steam.
$m=$;) water and steam.
Just before ebullition the whole mass contained 105 m heat units, and just after ebullition the water contained $(m-x) \times 100$ heat units, while the steam contained $(100+536) x=636 x$ heat units.

And if there has been no loss or gain of heat from without, the number of heat units in the water just before ebullition must be equal to the total number in the water and steam just after ebullition, and

$$
\begin{aligned}
\therefore(m-x) \times 100+636 x & =105 m . \\
\therefore 536 x & =5 m . \\
\therefore \frac{x}{m} & =\frac{5}{536}=\frac{1}{107} \text { nearly. }
\end{aligned}
$$

(7.) On another occasion the water in a glass vessel was raised to $102^{\circ} \mathrm{C}$. just before ebullition commenced. What fraction of the whole quantity of water was turned into steam at each burst?

Answer. $\frac{1}{268}$.
N.B. In both these cases the barometric pressure was 76 centimetres of mercury.
(8.) If the latent heat of steam is 536 when the units are the gramme and the Centigrade degree, what will be the number representing the latent heat of steam when the pound avoirdupois and one degree Fahrenheit are the units?

Since one gramme of water at $100^{\circ} \mathrm{C}$. in becoming steam at $100^{\circ} \mathrm{C}$. absorbs 536 water-gramme-degrees Centigrade, therefore one pound of water will absorb 536 water-pound-degrees Centigrade, or $\frac{9}{5} \times 536=964.8$ water-pounddegrees Fahrenheit.
\therefore latent heat of steam in terms of the new units is 964%.
(9.) Having given that one pound is equal to 453.59 grammes, find the ratio which the quantity of heat represented by one water-pound-degree Fahrenheit bears to the quantity represented by one water-gramme-degree Centigrade. Answer. 252 very nearly.
(10.) How much steam at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure must be passed into 600 kilogrammes of water initially at $15^{\circ} \mathrm{C}$. so as to raise the temperature of the whole to $70^{\circ} \mathrm{C}$.? It is assumed that during the process 40 per cent. of the total heat is lost by radiation and communication to surrounding objects, and the latent heat of steam is 537.

The heat gained by the 600 kilogrammes of water as the temperature rises from $15^{\circ} \mathrm{C}$. to $70^{\circ} \mathrm{C}$. is

$$
600 \times 55=33000 \text { kilogramme units. }
$$

And if x be the number of kilogrammes of steam required, the quantity of heat given up in condensing and cooling to $70^{\circ} \mathrm{C}$. is

$$
x(537+30)=x \times 567 \text { kilogramme units. }
$$

And since the heat gained by the water is only 60 per cent. of the heat given up by the steam, we have

$$
33000=\frac{3}{5} \times x \times 567
$$

$\therefore x=\frac{33000 \times 5}{3 \times 567}=97$ kilogrammes nearly.
(II.) How much steam at $100^{\circ} \mathrm{C}$. is required in order to raise the temperature of 620 pounds of water from $\circ^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$., 20 per cent. of the heat being lost by radiation and other causes? Answer. 1443^{2} pounds nearly.
(12.) What would be the latent heat of water vapour at $60^{\circ} \mathrm{C}$. if Watt's law be true ?

Watt came to the conclusion that the same total quantity of heat is required in order to evaporate the same mass of
water at all temperatures. But when the heating begins at $0^{\circ} \mathrm{C}$. and evaporation takes place at $100^{\circ} \mathrm{C}$., we know that the total heat of evaporation of a gramme of water is

$$
100+536=636 \text { units. }
$$

Let x be the latent heat of steam at $60^{\circ} \mathrm{C}$., then if the water be first heated from $0^{\circ} \mathrm{C}$. to $60^{\circ} \mathrm{C}$., the total heat of evaporation is $60+x$ units, and if Watt's law holds then

$$
60+x=636 \therefore x=576 \text { units. }
$$

(13.) Assuming Watt's law to be true, what is the latent heat of steam at $150^{\circ} \mathrm{C}$.? Answer. 486 units.
(14.) At what temperature would the latent heat of saturated steam be zero if Watt's law still holds? Answer. $636^{\circ} \mathrm{C}$.
N.B. In practice it is found that Watt's law holds good only for temperatures a little above or below $100^{\circ} \mathrm{C}$.
(15.) Regnault found that the total heat of evaporation of water may be represented by the equation

$$
\mathrm{Q}=606.5+0.305 t
$$

where t is the temperature of the water at which the steam is produced. Find by Regnault's formula the latent heat of steam at $60^{\circ} \mathrm{C}$.

Let x be the latent heat of steam at $60^{\circ} \mathrm{C}$., then

$$
\begin{gathered}
x+60=\mathrm{Q}=606 \cdot 5+305 \times 60=624 \cdot 8 . \\
\therefore x=564 \cdot 8 \text { units. }
\end{gathered}
$$

(16.) What would be the latent heat of water vapour at $0^{\circ} \mathrm{C}$., according to Regnault's formula ?

Answer. 606.5 units.
(17.) At what temperature would the latent heat of steam be zero according to Regnault's formula ?

Let $x^{\circ} \mathrm{C}$. be the required temperature, then by the formula in Example 15, we have

$$
\begin{gathered}
x=606.5+305 \times x . \\
\therefore x=872 \cdot 66^{\circ} \mathrm{C} .
\end{gathered}
$$

Note.-At this temperature no heat would be required to
convert the liquid into vapour, so that if Regnault's formula still held good the temperature of $872.7^{\circ} \mathrm{C}$. would be the ' critical temperature' of water, that is to say, the temperature above which the properties of the liquid are not separated from those of the vapour by any apparent distinction between them.
(18.) The steam in a boiler is at $120^{\circ} \mathrm{C}$. Find the total heat per gramme of steam and also the latent heat.

By Regnault's formula we have for the total heat

$$
Q=606.5+305 \times 120=643 \cdot 1 \text { gramme. units. }
$$

The latent heat $=643 \cdot 1-120=5^{2} 3^{\prime} \cdot \mathrm{g}$ gramme units.
(19.) Find the total heat and the latent heat per gramme of the steam in a boiler which is at $160^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\text { Answers. } & \text { Total heat }=655^{\circ} 3 \text { gramme units. } \\
& \text { Latent } \#=495^{\circ} 3
\end{array}
$$

(20.) When the temperature of the stean in a boiler is equal to $180^{\circ} \mathrm{C}$., what is the total heat and latent heat per gramme of steam ?

Answers. Total heat $=661.4$ gramme units. Latent ," $=48 \mathrm{r} \cdot 4$, "
(21.) One pound of steam at $100^{\circ} \mathrm{C}$. is passed into a vessel containing io pounds of water at $15^{\circ} \mathrm{C}$. and is there condensed. What will be the temperature of the mixture ?

Let $t^{\circ} \mathrm{C}$. be the resulting temperature of the mixture, then the total heat in the steam and water before mixture is

$$
(100+537)+10 \times 15=787 \text { pound units, }
$$

and the total heat after mixture is

$$
(\mathrm{I}+10) \times t=\mathrm{I} 1 t \text { pound units, }
$$

and if there is no loss or gain of heat from without these quantities of heat must be equal, therefore

$$
\mathrm{II} t=787 \therefore t=7 \mathrm{I}_{\mathrm{f}^{\circ} \mathrm{T}}{ }^{\circ} \mathrm{C} .
$$

(22.) One pound of steam at $100^{\circ} \mathrm{C}$. is condensed by

6 pounds of water at $\circ^{\circ} \mathrm{C}$. What is the temperature of the resulting mixture? Answer. $91^{\circ} \mathrm{C}$.
(23.) The latent heat of steam at $100^{\circ} \mathrm{C}$. being 537 , how much steam at this temperature must be condensed in 2 gallons of water at $6^{\circ} \mathrm{C}$. that the temperature of the resulting mixture may be $45^{\circ} \mathrm{C}$. ?

$$
\text { One gallon }=454 \mathrm{r} \text { c.c. }
$$

Density of water at $6^{\circ} \mathrm{C} .=99997$.
\therefore the quantity of condensing water $=2 \times 454 \mathrm{I} \times 99997$ $=908{ }^{\circ} 7$ grammes.
Let x be the number of grammes of steam which are required, then, assuming that there is no loss or gain of heat from without, we must have
$\left.\begin{array}{c}\text { Total heat of steam and water } \\ \text { before mixture . . . }\end{array}\right\}=\left\{\begin{array}{c}\text { Total heat of water in } \\ \text { resulting mixture. }\end{array}\right.$

$$
\begin{aligned}
& \therefore x \times 637+9081 \cdot 7 \times 6=(x+9081 \cdot 7) \times 45, \\
& \text { whence } x=\frac{9081 \cdot 7 \times 39}{59^{2}}=598.29 \text { grammes. }
\end{aligned}
$$

(24.) A bath contains 60 gallons of water initially at $15^{\circ} \mathrm{C}$. What quantity of steam at $100^{\circ} \mathrm{C}$. must be led into it so as to bring its temperature up to $30^{\circ} \mathrm{C}$.?

Answer. 6.727 kilogrammes, nearly.

(25.) The temperature of the injection water of a condensing engine is $15^{\circ} \mathrm{C}$. The steam enters the condenser at the temperature of $100^{\circ} \mathrm{C}$., and the water pumped out of the condenser is at $40^{\circ} \mathrm{C}$. What quantity of injection water must be supplied for each pound of steam that enters the condenser?

Let x be the number of pounds of water required, then the total quantity of heat in the steam and water before condensation is $(637+15 x)$ units, and the total quantity of heat in the condensed steam and the injection water after condensation is $(1+x) 40$ units, and since these must be equal, we have

$$
\begin{aligned}
& (1+x) 40=637+15 x . \\
& \therefore x=23.88 \text { pounds. }
\end{aligned}
$$

(26.) How many pounds of water at $15^{\circ} \mathrm{C}$. must be mixed with 20 lbs . of steam at $100^{\circ} \mathrm{C}$. in order to produce water at $45^{\circ} \mathrm{C}$. ? Answer. $394 \frac{2}{3}$ lbs.
(27.) Assuming that the area of the Valley of the Mississippi is 982,000 square miles, and that the mean annual rainfall is 40 inches, how many tons of coal would have to be burnt to produce an amount of heat equal to that which is annually set free among the clouds by the condensation? Each pound of coal is assumed to develop sufficient heat to raise the temperature of $8,080 \mathrm{lbs}$. of water $\mathrm{I}^{\circ} \mathrm{C}$.

Assuming that a cubic foot of water contains $\mathrm{x}, 000$ ounces, the quantity of rain is

$$
\mathrm{M}=\frac{982000 \times(1760 \times 3)^{2} \times 40 \times 1000}{12 \times 16} \text { pounds, }
$$

and the quantity of heat, in pound degrees, which is required to condense this is $M \times 537$ units.
\therefore tons of coal required $=\frac{\mathrm{M} \times 5.37}{8080 \times 20 \times \mathrm{II2}}$

$$
\begin{gathered}
=\frac{982000 \times(5280)^{2} \times 40 \times 1000 \times 537}{12 \times 16 \times 8080 \times 20 \times 112} \\
=1.6922 \times 10^{11} \text { tons nearly } .
\end{gathered}
$$

(28.) What quantity of this coal would be required in order to boil away entirely a ton of water which was initially at $20^{\circ} \mathrm{C}$. ?

Answer. ${ }^{17} \mathrm{I}^{-\frac{3}{0}} \mathrm{~T}$ lbs.
(29.) The worm-tub of a still contained 50 kilogrammes of water which was at $8^{\circ} \mathrm{C}$. when it was introduced, and it was replaced by fresh water as soon as it reached $25^{\circ} \mathrm{C}$. The steam entered the worm-tube at $100^{\circ} \mathrm{C}$., and the condensed water issued from the worm at $25^{\circ} \mathrm{C}$. How many times would the water in the tub have to be renewed in order to get $\mathrm{I} \mathrm{I}_{9}^{1}$ kilogrammes of distilled water ?

Let x be the number of times that the water in the tub had to be renewed.

Then the heat gained by the water in tub

$$
=x \times 50 \times(25-8)=850 x \text { units, }
$$

and the heat lost by the steam

$$
={ }_{9}^{100}(537+75)=\frac{61200}{9} \text { units. }
$$

But the heat gained by the water $=$ heat lost by the steam.

$$
\begin{aligned}
& \therefore 850 x=\frac{61200}{9} \\
& \therefore x=\frac{61200}{9 \times 850}=8 .
\end{aligned}
$$

(30.) A small glass beaker containing 50 grammes of ether at $35^{\circ} \mathrm{C}$. is placed in another beaker containing 100 grammes of water at $60^{\circ} \mathrm{C}$. The boiling point of ether being $35^{\circ} \mathrm{C}$., and the latent heat of its vapour 90 units, how much of the ether will evaporate, assuming that all the heat lost by the water goes to the ether?

In cooling through $25^{\circ} \mathrm{C}$. the 100 grammes of water part with 2,500 heat units.

Also x grammes of ether at 35° in changing into vapour absorb $x \times 90$ heat units, and since the heat lost by the water $=$ heat gained by the ether,

$$
\begin{gathered}
\quad 2500=90 x . \\
\therefore x=27 \frac{7}{9} \text { grammes. }
\end{gathered}
$$

(31.) Into the same two beakers were placed 50 grammes of absolute alcohol at $78.5^{\circ} \mathrm{C}$., and into the outer beaker 100 grammes of water at $92^{\circ} \mathrm{C}$. The boiling point of the alcohol being $78.5^{\circ} \mathrm{C}$., and the latent heat of its vapour 193 units, find how much of the alcohol will evaporate.

Answer. 6.994 grammes.

LATENT HEAT OF WATER.

(1.) Two thin glass flasks were suspended in a room in which the air was at $8.5^{\circ} \mathrm{C}$. One of the flasks contained water at $0^{\circ} \mathrm{C}$., and the other contained the same quantity of ice at $0^{\circ} \mathrm{C}$. At the end of half an hour the temperature of the water had risen $4^{\circ} \mathrm{C}$., and at the end of $10 \frac{1}{2}$ hours the ice had all melted and acquired the same temperature. Find the number of heat units required to melt a pound of ice at $0^{\circ} \mathrm{C}$.

Let m be the number of pounds of water or ice, then the water absorbs 4 m units of heat in half an hour, and \therefore $\frac{21}{2} \times 8 \mathrm{~m}=84 \mathrm{~m}$ units in $10 \frac{1}{2}$ hours.

Also the heat absorbed by the ice in $10 \frac{1}{2}$ hours is m $(x+4)$ units, and as both the flasks were in the same room we may assume that they received equal increments of heat in equal times.

$$
\therefore m(x+4)=84 m \quad \therefore x=80 \text { units. }
$$

(2.) A quantity of ice at $0^{\circ} \mathrm{C}$. was exposed to a constant source of heat, and it was found that it took eight minutes to reduce the mass of ice to water at $0^{\circ} \mathrm{C}$. It took ten minutes more to raise the temperature of the water to $100^{\circ} \mathrm{C}$., and thenceforward the temperature remained constant till, after a further interval of fifty-four minutes, the whole of the water had been converted into steam. Deduce from this experiment the latent heat of water, and also that of steam.

$$
\begin{array}{rr}
\text { Answers. Latent heat of water } & =80 . \\
", \quad \text { steam } & =540 .
\end{array}
$$

N.B. Unless otherwise stated the latent heat of water is to be taken as 80 units in the following examples.
(3.) Three pounds of crushed ice at $0^{\circ} \mathrm{C}$. were immersed in 7 pounds of water at $100^{\circ} \mathrm{C}$., and the final temperature of the mixture was $46.2^{\circ} \mathrm{C}$. Find from these data the
quantity of heat which is absorbed in the liquefaction of a pound of ice.

Let x be the number of units of heat required.
The heat lost by the water $=7 \times(100-46 \cdot 2)=376 \cdot 6$ units.

The heat gained by the ice $=3 \times(x+46 \cdot 2)$ units.
And assuming that there is no loss or gain of heat from without, these quantities of heat must be equal.

$$
\begin{aligned}
\therefore 3(x+46 \cdot 2) & =376 \cdot 6 \\
\therefore x & =79 \frac{1}{3} \text { units. }
\end{aligned}
$$

(4.) A kilogramme of crushed ice at $0^{\circ} \mathrm{C}$. was thrown into 2 kilogrammes of water at $25^{\circ} \mathrm{C}$. Assuming that there is no gain of heat from outside, what quantity of ice will have melted when the water has just cooled down to $0^{\circ} \mathrm{C}$. ?

Let $x=$ number of grammes of ice melted, then
the water loses $25 \times 2000=50000$ units,
the ice gains $80 x$ units, and these must be equal.
$\therefore 80 x=50000 \quad \therefore x=625$ grammes.
(5.) Find the temperature of the water obtained by pouring 5 pounds of boiling water over 3 pounds of ice at $0^{\circ} \mathrm{C}$.

Let $t^{\circ} \mathrm{C}$. be the required temperature, then
the heat lost by the water $=5(100-t)$ units.

$$
\begin{aligned}
\text { gained by the ice } & =3(80+t) \\
3(80+t) & =5(100-t) \\
\therefore t & =325^{\circ} \mathrm{C} .
\end{aligned}
$$

(6.) What will be the final temperature when 6 pounds of crushed ice at $0^{\circ} \mathrm{C}$. are mixed with 18 pounds of water at $90^{\circ} \mathrm{C}$. ? Answer. $475^{\circ} \mathrm{C}$.
(7.) How many thermal units will be required in order to convert 6 pounds of ice at $0^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. ?

Anszev. $6(80+100+537)=4,302$ units.
(8.) Some water is at the temperature of $50^{\circ} \mathrm{C}$., and

4 pounds of crushed ice at $0^{\circ} \mathrm{C}$. were thrown in. When all the ice had melted the temperature of the mixture was $30^{\circ} \mathrm{C}$. What was the original quantity of water?

Let x be the original number of pounds of water, then the heat lost by the water $=x \times 20$ units,
" gained by the ice $=4(80+30)=440$ units, and as before $x \times 20=440 \quad \therefore x=22$ pounds.
(9.) What quantity of water at $15^{\circ} \mathrm{C}$. will be required to melt io pounds of ice at $0^{\circ} \mathrm{C}$., so that the resulting mixture should be at $5^{\circ} \mathrm{C}$. ?

Answer. 85 pounds.
(ro.) How many pounds of steam at $100^{\circ} \mathrm{C}$. will just melt 20 pounds of ice at $0^{\circ} \mathrm{C}$., the latent heat of steam being 537 units? Answer. 2.5 I pounds nearly.
(ir.) How many pounds of crushed ice are required in order to condense and then cool down to $0^{\circ} \mathrm{C}$. io pounds of steam at $100^{\circ} \mathrm{C}$. ? Answer. $79 \frac{5}{8}$ pounds.
(12.) What quantity of ice would have been required for the final temperature of the mixture to have been $15^{\circ} \mathrm{C}$. ? Answer. $65^{\circ 47}$ pounds.
(13.) If a quantity of water be kept perfectly still it can be cooled down to $-10^{\circ} \mathrm{C}$. or even lower without freezing, but if it be then disturbed a portion of it at once becomes solid. What proportion does this part bear to the whole ?

Let m be the number of grammes of water originally.
$m^{\prime} \quad$ " " \quad that solidify.

The ($n-m^{\prime}$) grammes of water when the temperature has risen from $-10^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$. have absorbed io $\left(m-m^{\prime}\right)$ heat units.

The m^{\prime} grammes of water in solidifying to ice at $0^{\circ} \mathrm{C}$. have absorbed io m^{\prime} units and given out $80 m^{\prime}$ units, so that on the whole they have given out $70 \mathrm{~m}^{\prime}$ units.

$$
\begin{aligned}
\therefore 70 m^{\prime} & =10\left(m-m^{\prime}\right) \\
\therefore \frac{m^{\prime}}{m} & =\frac{1}{8} .
\end{aligned}
$$

(14.) Fifty pounds of water were carefully cooled down $10-8^{\circ} \mathrm{C}$. without solidifying. On slightly agitating the water a portion solidified and the temperature of the remainder rose to $0^{\circ} \mathrm{C}$. How much ice was formed ?

Answer. 5 pounds.
(15.) Assuming that the density of snow at $0^{\circ} \mathrm{C}$. is ${ }^{52}$, and that 3 inches of snow are on the ground, how many inches of rain at $10^{\circ} \mathrm{C}$. must fall so as just to melt all the snow?

The quantity of snow per square foot of ground

$$
\begin{aligned}
& =\frac{52 \times 1000}{4 \times 16} \text { pounds, } \\
& =8.125 \text { pounds }
\end{aligned}
$$

and if x be the number of inches of rain required the number of pounds per square foot will be

$$
\frac{x}{12} \times \frac{1000}{16} \text { pounds, }
$$

but each pound of snow absorbs 80 units of heat.

$$
\begin{aligned}
\therefore 10 x \times \frac{1000}{12 \times 16} & =8.125 \times 80 \\
\therefore x & =12.48 \text { inches. }
\end{aligned}
$$

(16.) If the layer of snow were 2 centimetres thick and of the same density as before, its temperature being $0^{\circ} \mathrm{C}$., how many centimetres of rain at $125^{\circ} \mathrm{C}$. must fall so as just to melt the snow? Answer. 6.65 centimetres.

WATER CALORIMETERS.

(1.) Find the specific heat of iron from the observation that when 96 grammes of iron at $100^{\circ} \mathrm{C}$. are immersed in 158.4 grammes of water at $10^{\circ} \mathrm{C}$., after the temperatures of the water and of the iron have become equalised their common temperature is $15^{\circ} 8^{\circ} \mathrm{C}$.

Let m_{1} be the number of grammes of iron.
$m_{2} \quad$ " ", water.
t_{1} be the orizinal temperature of the iron.

t_{2}	$"$,	water.	
т be the final	$"$	$"$	mixture.

x " required specific heat of the iron.
As the temperature of the water rises from t_{2} to T the water gains $m_{2}\left(\mathrm{~T}-t_{2}\right)$ heat units, and as the temperature of the iron falls from t_{1} to T the iron loses $m_{1} x\left(t_{1}-\mathrm{T}\right)$ units. If we assume that there is no loss or gain of heat from without, these quantities of heat must be equal, and therefore.

$$
\begin{aligned}
m_{1} x\left(t_{1}-\mathrm{T}\right) & =m_{2}\left(\mathrm{~T}-t_{2}\right) \\
\therefore x & =\frac{m_{2}}{m_{1}} \times \frac{\mathrm{T}-t_{2}}{t_{1}-\mathrm{T}} \\
& =\frac{158.4}{96} \times \frac{5.8}{84^{\prime 2}}=\text { II } 4 \text { nearly. }
\end{aligned}
$$

(2.) When a kilogramme of mercury at $100^{\circ} \mathrm{C}$. was mixed with a kilogramme of water at $7^{\circ} \mathrm{C}$., the final temperature of the mixture was $10^{\circ} \mathrm{C}$. What was the specific heat of the mercury ?
(3.) How many heat units are necessary to raise the temperature of 360 grammes of mercury from $20^{\circ} \mathrm{C}$. to $60^{\circ} \mathrm{C}$. ?

If m be the number of grammes of the substance, s its specific heat, and θ the change of temperature, the number of heat units required is

$$
\begin{aligned}
Q & =m . s . \theta \\
& =360 \times \frac{1}{30} \times 40=480 \text { gramme units. }
\end{aligned}
$$

(4.) How many heat units are required to raise 80 kilogrammes of iron from $5^{\circ} \mathrm{C}$. to $155^{\circ} \mathrm{C}$. ?

Answer. 1,368 kilogramnie units.
(5.) How many thermal units are required to ralse in
kilogrammes of mercury from $4^{\circ} \mathrm{C}$. to $32^{\circ} \mathrm{C}$., the capacity for heat of mercury being ${ }^{\circ} \mathrm{O}_{3} 19$?

Anszecr. $9825^{\circ} 2$ gramme-Centigrade units.
(6.) A calorimeter contains 400 grammes of water at $10^{\circ} \mathrm{C}$., and after 24° grammes of water at $80^{\circ} \mathrm{C}$. have been added the final temperature of the mixture is $14^{\circ} \mathrm{C}$. Find the water-equivalent of this calorimeter.

If m be the mass of the calorimeter expressed in grammes and s represent the specific heat of the material of which the calorimeter is made, then the product $m \times s$ is called the water-equivalent of the calorimeter, and is equal to the number of grammes of water which would absorb the same quantity of heat as the calorimeter actually does while its temperature rises one degree.

Let w be the water-equivalent of this calorimeter, then since the calorimeter and the water contained in it are at the same temperature, namely, $10^{\circ} \mathrm{C}$., they are together equivalent to $(w+400)$ grammes of water at $10^{\circ} \mathrm{C}$. But the heat lost by the added water must be equal to the heat gained by the calorimeter and the water which it contained originally, therefore

$$
\begin{aligned}
24.5 \times 66 & =4(w+400) \\
\therefore w & =\frac{17}{4}=4.25 \text { grammes. }
\end{aligned}
$$

(7.) This calorimeter was of brass and weighed 5° grammes. What should we infer from this to be the value of the specific heat of brass?

Since $z=m \times s$

$$
\therefore s=\frac{w}{m}=\frac{4.25}{50}=.085 .
$$

(8.) A small brass calorimeter weighing 1.2 grammes contained 15 grammes of water at $10^{\circ} \mathrm{C}$. A thermometer was heated up to $50^{\circ} \mathrm{C}$. and then its bulb was plunged into the calorimeter and the final temperature was $13^{\circ} \mathrm{C}$. What
was the water-equivalent of this thermometer up to the freezing point?

By the method of Example 6 we find $w=1.225$ gramme.
(9.) A thermometer was heated to $60^{\circ} \mathrm{C}$. and was then plunged into 30 grammes of water at $12^{\circ} \mathrm{C}$. and the final temperature was $3^{\circ} \mathrm{C}$. What was the water-equivalent of this thermometer?

$$
\text { Answer. } w=\frac{30}{47} \text { gramme. }
$$

(io.) What was the water-equivalent of a thermometer which when heated to $75^{\circ} \mathrm{C}$. and plunged into $27^{\circ} 5$ grammes of water at $11^{\circ} \mathrm{C}$. produced a final temperature of $13^{\circ} \mathrm{C}$. ? Answer. $\frac{55}{62}$ of a gramme.
Note.-The correction for the water-equivalent of the thermometer is never very accurate because the thermometer is only partially immersed in the liquid. In practice the mass of the thermometer used in such experiments is usually very small, so that the error arising from not allowing for the proper portion of the thermometer actually immersed is so small that it may be neglected.
(II.) Find the specific heat of mercury from an experiment in which 80 grammes of mercury were heated to $98^{\circ} \mathrm{C}$. and were then thrown into a calorimeter which, with the water contained in it, was equivalent to 112 grammes of water, the initial temperature being $10^{\circ} \mathrm{C}$. The final temperature of the mixture was $12^{\circ} \mathrm{C}$.

By the method of Example I,

$$
s=\circ \circ 33 \text { nearly. }
$$

(12.) Fifteen grammes of lead at $100^{\circ} \mathrm{C}$. are dropped into a vessel containing water at $22^{\circ} \mathrm{C}$. The heat capacity of the calorimeter and of the water contained in it being equal to that of 30 grammes of water, and the final temperature of the mixture being $23.54^{\circ} \mathrm{C}$., find the specific heat of lead.

Answer. 04028.
(13.). In one of Regnault's experiments $293 \cdot 65$ grammes of zinc at $99^{\circ} 11^{\circ} \mathrm{C}$. were immersed in $462^{\circ} 39$ grammes of water at $\circ^{\circ} \mathrm{C}$. The zinc was contained in a brass cage of 8.48 grammes, and the calorimeter was of brass and weighed $55^{\circ} 14$ grammes. The rise of temperature of the water was $5.22^{\circ} \mathrm{C}$., and the glass of the thermometer weighed I^{127} gramme, and the mercury contained in it 7.62 grammes. The specific heat of brass being ${ }^{\circ} 094$, that of mercury ${ }^{\circ} 033$, and that of glass ${ }^{1} 198$, find the specific heat of this sample of zinc.

By the method of Example 6, the water-equivalent of the calorimeter and thermometer was

$$
5 \cdot 184 \mathrm{I}+{ }^{\circ} 5029=5687 \text { grammes, }
$$

and if x be the specific heat of zinc, the heat gained by the calorimeter and its original contents being equal to the heat lost by the zinc and its cage, we have

$$
\begin{aligned}
93.89(293.65 x+8.48 \times 094) & =5.22 \times(5.687+462.39) \\
& =5.22 \times 468.077 .
\end{aligned}
$$

Solving this equation we get $x=\circ 86$ nearly.
(14.) Find the mean specific heat of water between $20.5^{\circ} \mathrm{C}$. and $1077^{\circ} \mathrm{C}$. from the following experiment of Regnault's.

The sheet-iron calorimeter weighed $693^{\circ} \cdot 6$ grammes and contained at first 99626.6 grammes of water at $17^{\circ} 7^{\circ} \mathrm{C}$. To this he added $10059^{\circ 8}$ grammes of water at $107.7^{\circ} \mathrm{C}$. The final temperature of the mixture was $20.5^{\circ} \mathrm{C}$., and it was known that the temperature of the mixture was lowered $\circ 3^{\circ} \mathrm{C}$. by the external air. The specific heat of the sheet iron was 'II38.

The water-equivalent of the calorimeter $=693^{\circ} \cdot 6 \times{ }^{\prime}$ II 3^{8} $=788 \cdot 8 \mathrm{I}$ grammes .
\therefore calorimeter + water $=788.8 \mathrm{I}+99626.6=1004154 \mathrm{I}$ grammes.
Let x be the mean specific heat of water between $20^{\circ} 5^{\circ} \mathrm{C}$.
and $107.7^{\circ} \mathrm{C}$., that of water up to $20^{\circ} 5^{\circ} \mathrm{C}$. being unity; then, since the heat lost by the added water is equal to the heat gained by the calorimeter and its original contents,

$$
\begin{aligned}
87^{.17} \times 10059.8 \times x & =100415.41 \times 8.83 \\
\therefore x & =\frac{100415.41 \times 8.83}{87.17 \times 10059.8}=1.0111 .
\end{aligned}
$$

(15.) Find the specific heat of some white marble from the following experimental data obtained by Regnault.

Quantity of marble taken.$=130.46$ grammes.
Water-equivalent of cage $=0.601$ gramme.
Water-equivalent of calorimeter and thermometer $\cdot=5 \%$ grammes.
Quantity of water in calori-
meter $=462^{\circ} 45$ "
Initial temperature of the
marble $=96.85^{\circ} \mathrm{C}$.

ICE CALORIMETERS.

(r.) A small hole was made in a block of ice in imitation of Black's calorimeter, and a leaden bullet of 88 grammes at $100^{\circ} \mathrm{C}$. was dropped in and a lid of ice put on. After a few minutes the bullet was taken out and the water produced by the melting of the ice was removed by a pipette and found to be 3.3 grammes. The hole was then enlarged, 88 grammes of boiling water were poured in, and when all the water in the hole had acquired the temperature of $0^{\circ} \mathrm{C}$. it was removed with a pipette and found to be 198 grammes. Deduce from this experiment the specific heat of lead.

The quantity of ice melted by the hot water is $198-88$ $=110$ grammes.
$\therefore 88$ granmes of water at $100^{\circ} \mathrm{C}$. will melt 110 grammes of ice,
and 88 grammes of lead at $100^{\circ} \mathrm{C}$. will melt 3.3 grammes of ice ;
\therefore quantity of heat in one gramme of lead at $100^{\circ} \mathrm{C}$.
-. quantity of heat in one gramme of water at $100^{\circ} \mathrm{C}$.

$$
=\frac{3.3}{110}=03 .
$$

\therefore specific heat of lead $={ }^{\circ} 3$.
(2.) An iron ball weighing 220 grammes and at $100^{\circ} \mathrm{C}$. was placed in a hole in a block of ice and an ice lid was placed over the hole. When the ball had cooled to $0^{\circ} \mathrm{C}$. it was found that 32.23 grammes of ice had been melted. Taking the latent heat of water at 80 units, find the specific heat of iron. Answer. 'II72.
(3.) How much snow at $0^{\circ} \mathrm{C}$. must be added to $3 \circ$ grammes of alcohol at $8^{\circ} \mathrm{C}$. so as to reduce its temperature to $0^{\circ} \mathrm{C}$., the specific heat of alcohol being 67 ?

Let x be the number of grammes of snow required, then the heat gained by the snow being equal to the heat lost by the alcohol,

$$
\begin{aligned}
& 80 x=30 \times 8 \times 67=160.8 \\
& \therefore x=\frac{160 \cdot 8}{80}=2.01 \text { grammes. }
\end{aligned}
$$

(4.) When 30 kilogrammes of platinum at $100^{\circ} \mathrm{C}$. were placed in a Lavoisier's calorimeter and had cooled down to $\circ^{\circ} \mathrm{C}$., it was found that $\mathrm{I}, 215$ grammes of ice had been melted. Find from this experiment the specific heat of platinum. Answer. -0324
(5.) In an experiment with Lavoisier's ice calorimeter a copper ball of 3.6 kilogrammes, which had been heated to $100^{\circ} \mathrm{C}$., was introduced into the calorimeter and 146 grammes of water escaped from the ice. Find the specific heat of copper. Answer. © 0325 nearly.
(6.) In another experiment with the same calorimeter 6 kilogrammes of iron at $80^{\circ} \mathrm{C}$. just melted 604 grammes of ice. Find the specific heat of this iron.

Answer. 'Io07 nearly.
(7.) A kilogramme of small pieces of lead was placed in a brass wire cage weighing 25 grammes, and the whole was then heated to $100^{\circ} \mathrm{C}$. and placed in a Lavoisier's ice calorimeter. When the temperature of the lead and cage had fallen to $0^{\circ} \mathrm{C}$. it was found that $39^{\circ} 6$ grammes of ice had been melted. Assuming the specific heat of brass to be -094, find the specific heat of lead.

Let x be the specific heat of lead, then in cooling from $100^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$. the lead and brass part with
$100\{1000 x+25 \times 094\}$ gramme units of heat, and the ice gains 39.6×80

$$
\begin{gathered}
\therefore 100\{1000 x+25 \times \cdot 094\}=39.6 \times 80, \\
\text { whence } x=0293 .
\end{gathered}
$$

(8.) It is found by experiment that 30 grammes of copper at $100^{\circ} \mathrm{C}$. are just sufficient to melt 3.45 grammes of ice at $0^{\circ} \mathrm{C}$. Find from this experiment the specific heat of copper. Answer. '092.
Note.-Lavoisier's calorimeter is subject to several very serious sources of error, which have caused it to be dismissed from the ranks of exact physical instruments, but in the hands of Lavoisier it furnished very good results.
(9.) Twelve grammes of a metal at $100^{\circ} \mathrm{C}$. are immersed in a mixture of ice and water, and when the metal has cooled to $0^{\circ} \mathrm{C}$. the bulk of the mixture is found to have diminished by 150 cubic millimetres without change of temperature. Find the specific heat of the metal.

The density of water at $0^{\circ} \mathrm{C}$. is 99987.

$$
\text { ice } \quad " \quad 91674
$$

\therefore one gramme of ice at $0^{\circ} \mathrm{C}$. occupies r 09082 c.c.
" " water ", ro0013 "
\therefore one gramme of ice at $0^{\circ} \stackrel{C}{C}$. in melting to water at
$0^{\circ} \mathrm{C}$. diminishes in bulk by 90.69 cubic millimetres.
\therefore a contraction of 150 cubic millimetres corresponds to the fusion of $\frac{150}{90.69}=1.654$ grammes of ice,
and this represents the absorption by the ice of 1.654×80 $=13^{2} 3^{2}$ gramme units of heat.

Let x be the specific heat of the metal, then, as before we have

$$
\begin{aligned}
x \times 12 \times 100 & =13^{2} 3^{2} \\
\therefore x & ={ }^{11027} .
\end{aligned}
$$

N.B. This example illustrates the principle of Bunsen's calorimeter, which consists in measuring the quantity of ice melted by the contraction which this ice undergoes on liquefaction. The student will find a full description of the apparatus and the experiments made therewith in 'Phil. Mag.' 187 r.
(ro.) In one of Bunsen's series of experiments the average quantity of ice which was melted at each experiment was ' 35 gramme. What was the average quantity of heat imparted to the calorimeter at each experiment?

Answer. 28 gramme units.
(ir.) In Bunsen's calorimeter the change of volume of the mixture of ice and water is measured in a long horizontal graduated glass tube containing mercury. At $9^{\circ} \mathrm{C}$. the thread of mercury which occupied 507.4 subdivisions of the tube weighed 5326 gramme. What was the capacity of each subdivision of the tube?

The capacity of one subdivision

$$
\begin{gathered}
=\frac{1}{5074} \times \frac{5326}{13.596} \times \frac{5559}{5550} \text { c.c. }=7.733 \times 10^{-5} \text { c.c. } \\
={ }^{\circ} 07733 \text { cubic millimetre } .
\end{gathered}
$$

(12.) Through how many subdivisions of the tube would the thread of mercury recede for an absorption by the calorimeter of I water-gramme-degree Centigrade of heat ?

By Example 9, one gramme of ice in melting contracts by 90.69 cubic millimetres, and absorbs in doing this 80 gramme units of heat.
$\therefore 1$ gramme unit of heat corresponds to a contraction of

$$
\begin{aligned}
\frac{20 \cdot 69}{80} & =r \cdot 133^{62} \text { cubic millimetre. } \\
& =\frac{1 \cdot 13362}{\circ} \text { a } \\
& =1433
\end{aligned}
$$

(3 .) Find the quantity of melted ice which corresponds to a change of volume of one subdivision of the tube. Answer. 853 milligramme.
(14.) A gramme of brass at $37^{\circ} \mathrm{C}$. was dropped into the Bunsen's calorimeter, and caused the end of the thread of mercury to retreat through 50 subdivisions of the tube. Deduce from this the specific heat of brass.

Let x be the specific heat of brass ; then, as the heat given out by the brass is equal to the heat absorbed by the ice,

$$
\begin{aligned}
x \times 37 & =000853 \times 80 \times 50=3.412 . \\
\therefore x & =\frac{3.412}{37}=.0922 .
\end{aligned}
$$

(15.) In another experiment the test tube contained a small quantity of water at $0^{\circ} \mathrm{C}$., and when 35 of a gramme of iron at $60^{\circ} \mathrm{C}$. was dropped in, the retrocession of the mercury thread was $35^{\circ} 2$ subdivisions. Deduce from this the specific heat of iron. Answer. 'r144 nearly.
N.B. With the Bunsen calorimeter the quantity of the substance used need not exceed 3 of a gramme, whereas with the Lavoisier calorimeter satisfactory determinations of specific heat can scarcely be obtained unless the quantity of the substance employed is from 10 to 40 grammes.

GENERAL CALORIMETRY.

(r.) Twenty cubic centimetres of alcohol and the same bulk of water are exposed to the same cooling atmosphere, and are found to cool down through the same interval of
temperature in 7 and 15 minutes respectively. If the density of the alcohol be 8 , what is its specific heat?

Let $x=$ specific heat of the alcohol. $m=$ number of grammes of water.
and $\frac{8 m}{10}=\quad " \quad$ alcohol.
Let $\theta=$ fall of temperature in Centigrade degrees.
The quantity of heat lost by the alcohol $=\frac{8 m}{10} \times x \times \theta$.

$$
" \quad " \quad \text { water }=m \times \theta \text {. }
$$

And since they are both exposed to the same cooling atmosphere the quantities of heat abstracted from them must be proportional to the times, and

$$
\begin{gathered}
\therefore \frac{x \times 8}{1}=\frac{7}{15} . \\
\therefore x=\frac{7}{15} \times \frac{10}{8}=\frac{7}{12} .
\end{gathered}
$$

(2.) Find the specific heat of mercury from the observation that when the same vessel is successively filled with water and with mercury, and heated to the same temperature, the water and the mercury cool through the same number of degrees in 240 and 108 seconds respectively. The density of mercury is assumed to be constant and equal to 13.6 .

$$
\text { Answer. } 033
$$

(3.) Find the latent heat of fusion of phosphorus from the following data:-

In a calorimeter containing some hot water $80^{\circ} 5$ grammes of phosphorus were melted, and the whole was then allowed to cool quietly. The phosphorus remained liquid until its temperature had fallen considerably below that corresponding to its usual temperature of solidification. Suddenly it solidified, and the temperature of the whole increased by $57^{\circ} \mathrm{C}$. The water equivalent of the calorimeter and water was 58.75
grammes, and the specific heat of phosphorus, whether solid or liquid, is approximately $\cdot 2$.

Let x be the latent heat of fusion of phosphorus ; then, since the heat given up by the phosphorus in solidifying is equal to the heat gained by the calorimeter, the water, and phosphorus,

$$
\begin{gathered}
80.5 \times x=\left(58.75+80.5 \times{ }^{\circ}\right){ }_{5}{ }^{\circ} 7=74.85 \times 5 \% \\
\therefore x=\frac{74.85 \times 5.7}{80.5}=5.3 \mathrm{I}
\end{gathered}
$$

(4.) Find the latent heat of fusion of ice from the following data :-
Water equivalent of calorimeter and water $=720^{\circ} 3$ grammes. Quantity of ice melted .
Initial temperature of water in calorimeter $=30^{\circ} \mathrm{C}$.
Final
"
$" \quad " \quad \begin{aligned} &= 15^{\circ} \mathrm{C} . \\ & \text { Answer. }\end{aligned}$ 80'if.
(5.) A sheet-iron calorimeter of 512 grammes contained 19.5 kilogrammes of water at $10^{\circ} 2^{\circ} \mathrm{C}$., and after 198.6 grammes of steam at $100^{\circ} \mathrm{C}$. had been passed into it, the temperature of the water in the calorimeter was $16.5^{\circ} \mathrm{C}$. The specific heat of the calorimeter was 'II. Neglecting any loss of heat by radiation, calculate from this experiment the latent heat of steam.

Answer. 537 nearly.
(6.) The copper worm-tub of a still, with its tube, weighs $502^{\circ} 5$ grammes, and the tub contains 600 grammes of water. The temperature of the water rose $4.5^{\circ} \mathrm{C}$. after 157.67 grammes of air had passed through the tube, the air entering at $88^{\circ} \mathrm{C}$. and leaving the tube at a mean temperature of $10^{\circ} \mathrm{C}$. The specific heat of copper being ${ }^{\circ} 095$, find from the data of this experiment the specific heat of air at constant pressure.

Let x be the specific heat of air at constant pressure ; then

Heat lost by the air $=157.67 \times 78 \times x$ heat units.

Heat gained by the calorimeter and water

$$
\begin{gathered}
=(502.5 \times .095+600) \times 4.5=2914.82 \text { units nearly. } \\
\therefore x=\frac{2914.82}{157.67 \times 78}={ }^{2} 37 .
\end{gathered}
$$

(7.) The water equivalent of the worm-tub, spiral tube, and water was 950 grammes, and the initial temperature of the water was $4^{\circ} \mathrm{C}$. After 144 grammes of carbonic oxide at $80^{\circ} \mathrm{C}$. had passed through the tube the temperature of the water was $57^{\circ} \mathrm{C}$., and the mean temperature of the gas as it issued from the tube was $35^{\circ} \mathrm{C}$. Calculate from this experiment the value of the specific heat of carbonic oxide at constant pressure.
(8.) Calculate the latent heat of steam from the following data, which were obtained by passing a measured quantity of steam through a copper tube contained in a copper calorimeter :-
Mass of the calorimeter and copper tube $=3728.8$ grammes.

(9.) An icicle weighing 200 grammes was cooled down to $-10^{\circ} \mathrm{C}$., and was then immersed in some water at $0^{\circ} \mathrm{C}$., the temperature of the surrounding air being also $0^{\circ} \mathrm{C}$. The temperature of the icicle rose to $0^{\circ} \mathrm{C}$., and on removing it and weighing, it was found to have gained 12.5 grammes. Find from these data the specific heat of ice.

Let x represent the specific heat of ice ; then, as the temperature changes from $-10^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$. the 200 grammes
of ice absorb $200 \times 10 \times x$ heat units. The 12.5 grammes of water in solidifying give out 80×12.5 heat units, and

$$
\begin{aligned}
\therefore 2000 x & =80 \times 12.5 \\
\therefore x & =\frac{1}{2}
\end{aligned}
$$

(ro.) What number of heat units are required in order to convert 7 lbs . of ice at $-12^{\circ} \mathrm{C}$. into water at $25^{\circ} \mathrm{C}$. ? Answer. 777 heat units.
(ir.) How many units of heat are required to convert 3 lbs . of ice at $-6^{\circ} \mathrm{C}$. into water at $40^{\circ} \mathrm{C}$. ?

Answer. 369 units.
(12.) What quantity of heat is required in order to convert 20 lbs . of ice at $-12^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. ? Answer. 14,460 units.
(3 3.) What quantity of heat is required to raise a pound of ice at $-10^{\circ} \mathrm{C}$. to steam at $100^{\circ} \mathrm{C}$. ?

Answer. 722 pound units.
(14.) A pound of crushed ice which had been cooled down to $-6^{\circ} \mathrm{C}$. was immersed in a quantity of water at $6^{\circ} \mathrm{C}$., and when the ice was all melted the temperature of the mixture was $4.5^{\circ} \mathrm{C}$. What was the original quantity of water?

Let x be the number of pounds of water, then the heat lost by the water $=x \times 1^{\circ} 5$ units.
" gained " ice $=3+80+4{ }^{\circ} 5=87{ }^{\circ} 5$ units.

$$
\therefore x=\frac{87 \cdot 5}{1 \cdot 5}=58 \frac{1}{3} \mathrm{lbs} .
$$

(15.) A lump of ice at $-8^{\circ} \mathrm{C}$. was placed in a vessel containing 20 lbs . of water at $15^{\circ} \mathrm{C}$., and when the ice had all melted the temperature was $6^{\circ} \mathrm{C}$. What was the quantity of ice?

Answer. 2 lbs .
(16.) How many pounds of steam at $100^{\circ} \mathrm{C}$. will be required to melt 50 lbs . of ice at $-6^{\circ} \mathrm{C}$. ?

Answer. 6.515 lbs. nearly.
(17.). If twenty cubic metres of air at $12^{\circ} \mathrm{C}$. and 76.2 centimetres pressure, and of which the hygrometric state is $\cdot 62$, be mixed with 36 cubic metres of air at $16^{\circ} \mathrm{C}$. and 77 centimetres pressure, and of which the hygrometric state is 4 , find the temperature of the mixture and its hygrometric state, having given that the final bulk is 56 cubic metres, and that
maximum pressure of water vapour at $16^{\circ} \mathrm{C} .=1.353$ centims.

$$
" \quad \# \quad \# \quad 12^{\circ} \mathrm{C}=1.046 \quad,
$$

Specific heat of water vapour is twice that of air.
In solving this question we must first find the respective quantities of dry air and of aqueous vapour in each of the given volumes of moist air.

First quantity.-The pressure of the vapour $={ }^{\circ} 62 \times 1.046$ $=649$ centimetre.
Dry air $=20 \times 1293 \times \frac{76^{\circ} 2-649}{76} \times \frac{273}{285}=24624.8 \mathrm{grms}$.
Vapour $=\frac{5}{8} \times 20 \times 1293 \times \frac{.649}{76} \times \frac{273}{285}=132.2$ "
Second quantity.-The pressure of the vapour $=1 \cdot 353 \times \cdot 4$ $={ }^{54}$ I centimetre.

$$
\begin{aligned}
& \text { Dry air }=36 \times 1293 \times \frac{77-541}{76} \times \frac{273}{289}=44236.5 \mathrm{grms} . \\
& \text { Vapour }=\frac{5}{8} \times 36 \times 1293 \times \frac{.541}{76} \cdot \frac{273}{289}=195.6 \mathrm{n}
\end{aligned}
$$

If $t^{\circ} \mathrm{C}$. be the temperature of the mixture, and s the specific heat of air, $\left.\begin{array}{c}\text { the heat gained by } \\ \text { the cooler air }\end{array}\right\}=\left(24624^{\circ} 8+2 \times 132^{2} 2\right) s(t-12)$ units, $\left.\begin{array}{l}\text { the heat lost by the } \\ \text { warmer air. }\end{array}\right\}=\left(44236.5+2 \times 195^{\circ} 6\right) s(16-t)$ units, and since these quantities of heat must be equal, we have
whence

$$
\begin{gathered}
\frac{t-12}{16-t}=\frac{446277}{24889^{\circ} 2}=1 \cdot 793 \\
t=14^{\circ} \cdot 6^{\circ} \mathrm{C}
\end{gathered}
$$

Next, to calculate the hygrometric state of the air, we find from a table of vapour pressures that the maximum pressure of aqueous vapour at $14^{\circ} 5^{\circ} \mathrm{C}$. is $\mathrm{r}^{\circ} 235$ centimetre, and the bulk of the mixture being 56 cubic metres the quantity of water vapour which would saturate this at $14.56^{\circ} \mathrm{C}$. is

$$
\frac{5}{8} \times 56 \times 1293 \times \frac{1 \cdot 2.3 .5}{76} \times \frac{27.3}{287.56}=699.8 \text { grammes } .
$$

But the quantity of aqueous vapour actually present $=132^{\circ} 2+195^{\circ} 6=327^{\circ}$ grammes.
Therefore the hygrometric state of the mixture

$$
=\frac{327 \cdot 8}{699 \cdot 8}=4668
$$

(18.) Three cubic metres of moist air, the temperature of which is $15^{\circ} \mathrm{C}$., the pressure 76 centimetres, and hygrometric state 82 , are mixed with 2 cubic metres of moist air at $5^{\circ} \mathrm{C}$., 76 centimetres pressure, and hygrometric state 8 , and the mixture occupies 5 cubic metres. Having given that the maximum pressures of water vapour at $5^{\circ}, 109^{\circ}, 15^{\circ}$ are respectively $\cdot 6,98$, and 1.27 centimetres of mercury, find the hygrometric state of the mixture. Answer. 83.

CONDUCTION.

(1.) A plate of wrought iron 2 centimetres thick and io square decimetres in area was placed so as to form a partition separating water, which was kept at $15^{\circ} \mathrm{C}$. on the one side, from melting ice on the other, and it was found that in one hour 59° kilogrammes of ice were melted. Deduce from this the conductivity of wrought iron.

The thermal conductivity of a substance is measured by the number of heat units which pass in one second across a plate of the substance of unit area and unit thickness when its faces differ in temperature by $\mathrm{I}^{\circ} \mathrm{C}$.

Let $\kappa=$ coefficient of conductivity in centimetre-grammesecond units.
$\mathrm{A}=$ area of the plate in square centimetres.
$d=$ thickness of the plate in centimetres.
$t=$ temperature of cold side of the plate.
$t^{\prime}=$ " \quad hot "
$n=$ number of seconds during which the flow of heat proceeds.
$Q=$ number of heat units which flow across the area A in n seconds.
Then

$$
\begin{gathered}
Q=\kappa \times n \times\left(t^{\prime}-t\right) \times \frac{\mathrm{A}}{d} . \\
\therefore \kappa=\frac{\mathrm{Q} \times d}{n\left(t^{\prime}-t\right) \mathrm{A}} .
\end{gathered}
$$

In the present case

$$
\begin{aligned}
& Q=59200 \times 80 \text { units, } \\
& d=2 \\
& n=3600 \\
& t-t=15 \\
& \mathrm{~A}=1000 \\
& \therefore \kappa=\frac{59200 \times 80 \times 2}{3600 \times 15 \times 1000}=175 .
\end{aligned}
$$

(2.) One side of a brass plate one centimetre thick and one square decimetre in area is kept in contact with boiling water, and the other side with melting ice, and it is found that in 8 minutes 64.92 kilogrammes of ice were melted. Find the conductivity of brass in c.-g.-s. units. Answer. I 082.
(3.) How much water will be evaporated per hour when it is boiled at $100^{\circ} \mathrm{C}$. in an iron boiler $1^{\circ} 5$ centimetre thick, having the area of its heating surface equal to 460 square centimetres, and its outer surface being kept at $180^{\circ} \mathrm{C}$. ?

By the formula in Example I we have
$Q=\kappa \times n \times\left(t^{\prime}-t\right) \times \frac{A}{d}=\cdot 175 \times 3600 \times 80 \times \frac{460}{1.5}$ heat units.

And if $x=$ number of grammes of water evaporated per hour, taking 537 for the latent heat of steam, we have
$x=\frac{\mathrm{Q}}{537}=\frac{{ }^{1} 75 \times 3600 \times 80 \times 460}{537 \times 1.5}=\left\{\begin{array}{l}28782 \text { grammes, or } \\ 28.782 \text { kilogrammes } .\end{array}\right.$
(4.) The temperature of a large room is kept at $21^{\circ} \mathrm{C}$. by a large iron stove, the temperature of the interior of which is kept constant at $200^{\circ} \mathrm{C}$. If the thickness of the stove be one centimetre, find how much heat will be given off per minute from each square decimetre of its exterior face.

Answer. 187.95 kilogramme-degrees.
(5.) The brick walls of a cottage are 50 centimetres thick, and the inside of the cottage is kept constantly at $16^{\circ} \mathrm{C}$., while the temperature outside is $-5^{\circ} \mathrm{C}$. How much heat will be lost per hour from each square decimetre of the outer face of the walls? The conductivity of the brick is 0034 Answer. 514.08 water-gramme-degrees.
(6.) Find the quantity of heat which is given off per minute from each square decimetre of the surface of an iron steam boiler 8 millimetres thick, when the temperature of the inner surface of the boiler is kept at $120^{\circ} \mathrm{C}$. and that of the outer surface is $119.5^{\circ} \mathrm{C}$.

Answer. 656.25 gramme-degrees.
(7.) On a certain day the temperature of the hot-room at a Turkish bath was $52^{\circ} \mathrm{C}$., and that of the cold-room $18^{\circ} \mathrm{C}$., and the two rooms were separated from each other by a plate of glass 2 centimetres thick. The lower portion of this glass was in the form of a rectangle 4.3 metres high and 2.4 metres broad, while the upper part was in the shape of three-quarters of a circle of $1^{\circ} 2$ metre radius. Find the quantity of heat given off per minute by this plate of glass, the conductivity of glass in c.-g.-s. units being o 15 .

Answer. 2251:288 kilogramme-degrees.

FORCE OF EXPANSION AND CONTRACTION.

(r.) An iron bar whose sectional area is 2 square inches is allowed to cool from $100^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$. What force would it exert if it were prevented from contracting ? Let $l=$ natural length of bar at $0^{\circ} \mathrm{C}$.
Then $l(\mathrm{I}+100 a)=\quad " \quad \Rightarrow \quad 100^{\circ} \mathrm{C}$.

$$
\therefore \frac{\text { Increment in length }}{\text { Original length } .}=100 a=001225
$$

Hence, if the bar be prevented from contracting when its temperature changes from $100^{\circ} \mathrm{C}$. to $0^{\circ} \mathrm{C}$., it is stretched beyond its natural length at $0^{\circ} \mathrm{C}$. by a quantity $l \times{ }^{\circ} 001225$.

Taking $29,000,000 \mathrm{lbs}$ as the modulus of elasticity for iron, we shall find that the force required to produce this elongation in a bar of 2 square inches section is

$$
\begin{aligned}
\mathrm{F}= & \frac{29000000}{20 \times 112} \times 2 \times 001225 \text { tons. } \\
& =31 \text { tons } 14 \mathrm{cwt} .42 \mathrm{lbs}
\end{aligned}
$$

And this represents the force with which the bar tends to contract.
(2.) What force would be required to prevent the expansion of an iron bar half of a square inch in section if its temperature were raised from $10^{\circ} \mathrm{C}$. to $30^{\circ} \mathrm{C}$., the coefficient of expansion of iron being 000012 ?

Answer. I ton 11 cwt. 8 lbs.
(3.) A cast-iron pillar 12 square inches in section is firmly fixed between two immovable blocks, the temperature being $0^{\circ} \mathrm{C}$. What will be the pressure exerted against these blocks if the temperature rises to $30^{\circ} \mathrm{C}$. and the modulus of elasticity for cast iron be $17,000,000 \mathrm{lbs}$. ?

Answer. 3^{2} tons 15 cwt . 80 lbs .
(4.) When an iron rod 33 feet 4 inches long and 3 inches in diameter is stretched by a force of 37.5 tons, the elongation is ${ }^{1} 171$ of an inch. What variation in its temperature
would produce the same effect, the coefficient of linear expansion of the iron being 0000122 for $\mathrm{I}^{\circ} \mathrm{C}$. ?

Let $x^{\circ} \mathrm{C}$. be the required variation in the temperature;
then

$$
\begin{gathered}
\therefore \mathrm{I} 7 \mathrm{I}=400 \times \cdot 0000122 \times x . \\
\therefore x=\frac{\cdot 17 \mathrm{I}}{400 \times{ }^{\circ} 0000122}=35^{\circ} 04 \mathrm{I} \\
=35^{\circ} \mathrm{C} . \text { nearly }
\end{gathered}
$$

(5.) An iron bar, io feet long and $\frac{1}{6}$ th of a square inch in section, is elongated half an inch by a stretching-force of 17,286 lbs. What change of temperature would produce the same effect? Answer. $342^{\circ} \mathrm{C}$. nearly.
(6.) According to Wertheim's experiments, the mean force which is required to stretch an iron bar of one square centimetre section by one-millionth of its length, when its temperature is between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$., is 2,125 grammes. If the coefficient of expansion of iron be 000012 , calculate the requisite change of temperature to produce the same effect.
(7.) The upper end of an iron wire, whose sectional area is ${ }^{\circ} 021$ of a square centimetre, is rigidly attached to a beam, and to the lower end is fastened a scale-pan resting on the ground. What weight will have to be put into the scale-pan so as to keep it on the ground if the temperature falls through $25^{\circ} \mathrm{C}$. ?

The contraction would be $25 \times 000012=0003$ of the length of the wire, but a contraction of one-millionth would require an opposing force of $2125 \times{ }^{\circ} 02 \mathrm{I}=44 \cdot 625$ grammes. \therefore a contraction of 300 millionths requires an opposing force of $44.625 \times 300=13387.5$ grammes.
(8.) If the sectional area of the wire had been 006 of a square centimetre, and the fall of temperature from $20^{\circ} \mathrm{C}$. to $7^{\circ} \mathrm{C}$., what would have been the requisite opposing weight? Anszeer. 1,989 grammes.
(9.) A series of iron rods one square inch in section were carried across an old church, passing through holes in the
walls, and secured on the outside by screw-nuts and washers. The rods were then heated from $10^{\circ} \mathrm{C}$. to $120^{\circ} \mathrm{C}$., the nuts screwed home, and the rods then allowed to cool. The initial length of each rod was 40 feet, and the holes were 16 feet above the joint in the masonry about which the walls were to turn. The walls being initially 4° out of the vertical, calculate how often the rods would have to be heated so as to render the walls vertical.

The distance of each wall from the central line towards which it had to be pulled was 20 feet, and the arc through which the top of the wall had to be drawn was

$$
\frac{\pi}{45} \times 16 \text { feet. }
$$

The expansion of an iron rod 20 feet long for a change of temperature of $110^{\circ} \mathrm{C}$. is $000012 \times 20 \times 110={ }^{\circ} 0264$ of a foot, and if x be the number of times the rods require to be heated, we shall have

$$
\begin{aligned}
x \times \circ 0264 & =\frac{\pi \times 16}{45} . \\
\therefore x & =\frac{\pi \times 16}{45 \times{ }^{\circ} 264}=42.3 \mathrm{II} . \\
& =43 \text { times nearly. }
\end{aligned}
$$

(10.) If the walls had been sixty feet apart, 2° out of the vertical, and the holes 20 feet above the line of rotation, what number of heatings would have been required ? Answer. ${ }^{17} 63$, or 18 times nearly.
(ri.) According to Grassi's investigations, a pressure of 343,644 dynes per square centimetre is required to compress mercury by one-millionth of its bulk. What change of temperature would produce the same result ?

When the temperature rises from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. the expansion of mercury is 018153 of its bulk at $0^{\circ} \mathrm{C}$., and

Numerical Examples in Heat.

\therefore for $1^{\circ} \mathrm{C}$. it expands by ${ }^{\circ} 00018 \mathrm{I} 53$, or $\mathrm{I}^{8} \mathrm{r}^{\circ} 53$ millionths. Hence, if $x^{\circ} \mathrm{C}$. be the required change of temperature,

$$
\begin{aligned}
x \times 18 \mathrm{I} 53 & =\mathrm{I} \\
\therefore x & =\frac{\mathrm{I}}{18 \mathrm{I}^{\wedge} 53} \text { of a degree Centigrade. }
\end{aligned}
$$

(12.) If mercury were heated from $\circ^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$., what pressure would be required to prevent its expanding?

The change of volume $=100 \times{ }^{\circ} 0018153$ or ${ }^{18153}$ millionths.
\therefore pressure required
$=343^{644} \times 18153$ dynes per square centimetre.
$=\frac{343^{6} 44 \times 18153}{9.81 \times 10^{5}}$ kilogrammes per square centimetre.
$=6359$ kilogrammes per square centimetre.
$=\frac{6359}{101605 \times 10^{3}}$ tons per square centimetre.
$=6.25$ tons per square centimetre nearly.
(I3.) Water experiences a compression of 50 millionths of its bulk for a pressure equal to that of the atmosphere, which is about 1.014×10^{6} dynes per square centimetre. Water expands by 8.2 millionths of its bulk at $4^{\circ} \mathrm{C}$. when its temperature rises from $4^{\circ} \mathrm{C}$. to $5^{\circ} \mathrm{C}$. What pressure per square centimetre would be required to prevent this expansion? Answer. 166,296 dynes.
(14.) If the expansion of mercury between $0^{\circ} \mathrm{C}$. and $10^{\circ} \mathrm{C}$. is ${ }^{0017905}$ of its volume at $0^{\circ} \mathrm{C}$., calculate the pressure per square centimetre which would be required to prevent its expansion if its temperature were raised by this amount? Answer. 627.21 kilogrammes.

THERMODYNAMICS.

(r.) Find the distance through which a mass of one ton can be raised against the force of gravity by the expenditure of a quantity of heat equal to that which would raise the temperature of one pound of water from $\circ^{\circ} \mathrm{C}$. to $15^{\circ} \mathrm{C}$.

Joule's experiments have proved that the quantity of work which has to be done to raise a mass of $\mathrm{r}, 390 \mathrm{lbs}$. against gravity through a vertical height of one foot would be sufficient, if it were entirely converted into heat, to raise the temperature of one pound of water from $0^{\circ} \mathrm{C}$. to $\mathrm{I}^{\circ} \mathrm{C}$. Hence the 'dynamical equivalent,' or, as it is often called, 'Joule's equivalent,' of this quantity of heat is 1,390 footpounds.
If Q represent the quantity of heat in water-pound-degrees Centigrade,
w " "work which can be done by this heat in foot-pounds, . .
J " Joule's equivalent,
then, by the first law of Thermodynamics,

$$
\begin{aligned}
\mathrm{w}=\mathrm{Q} \times \mathrm{J}=15 \times 1390= & 20850 \text { foot-pounds, } \\
& \text { or } 9^{\circ} 3 \text { foot-tons nearly. }
\end{aligned}
$$

(2.) A mass of one ton is lifted by a steam-engine to a height of 200 feet. What is the quantity of heat expended in doing this?

$$
Q=\frac{W}{J}=\frac{20 \times 112 \times 200}{1390}=322.3 \text { pound-units nearly. }
$$

(3.) How much heat is expended in lifting a mass of 3 hundredweight through a vertical distance of 250 teet ? Answer. 60.43^{2} pound-units.
(4.) A man weighing 12 stone ascends a tower 90 feet high. How much heat has his body to supply in doing this? Answer. 10.87 pound-units.
(5.) Find the heat-equivalent of one horse-power in water-pound-degrees Centigrade.

One theoretical horse-power $=33,000$ foot-pounds per minute.
\therefore heat-equivalent $=\frac{33000}{1390}=23^{\circ} 74 \mathrm{I}$ pound-degrees per minute.
(6.) When water is the standard substance, the dynamical equivalent of a pound-degree Centigrade of heat is $\mathrm{r}, 390$ foot-pounds; what would be the value of the 'dynamical equivalent' of a pound-degree if the standard substance were mercury, the specific heat of which is 032 ?

Answer. ${ }^{1} 390 \times{ }^{\circ} 3^{2}=44.48$ foot-pounds.
(7.) The mass of a train, including the engine, is 100 tons, and the resistance is 8 pounds per ton. What will be the least quantity of heat (in water-pound-degrees Centigrade) which will have to be expended by the steam in a run of roo miles on a level road ?

$$
\text { Work done }=800 \times 100 \times 1760 \times 3 \text { foot-pounds. }
$$

\therefore heat expended $=\frac{800 \times 100 \times 1760 \times 3}{1390}=303885$ units.
(8.) A lump of lead weighing 16 pounds falls from a height of 200 feet on to a hard, non-conducting surface. If all the heat generated by the collision be absorbed by the lead, find its rise of temperature, the specific heat of lead being ${ }^{\circ}{ }^{\circ}$.

When a falling body has its motion suddenly arrested, the quantity of heat generated by the stoppage of its motion is such that its dynamical equivalent would have just sufficed to lift the body back to its original position. Now, the dynamical equivalent of one water-pound-degree Centigrade of heat will lift $\mathbf{I}, 390$ pounds one foot high, or one pound r,390 feet.
\therefore the heat-equivalent of the stoppage of the motion of one pound after a fall of $\mathrm{r}, 390$ feet $=$ one water-pound-degree;
\therefore heat-equivalent of 16 pounds after falling 200 feet

$$
=\frac{16 \times 200}{1390} \text { water-pound-degrees Centigrade. }
$$

\therefore rise of temperature $=\frac{16 \times 200}{1390 \times 16 \times{ }^{\circ} 03}=4.8^{\circ} \mathrm{C}$. nearly.
(9.) An iron cannon-ball of 68 pounds is dropped from a tower 350 feet high on to a hard, non-conducting surface at its base. If the specific heat of iron be 1138 , and all the heat generated by the collision be absorbed by the ball, by how much will its temperature be raised ?

Answer. $2^{\prime 2} 2^{\circ} \mathrm{C}$. nearly.
(io.) A platinum ball falls from a height of 80 metres on to a rigid, inelastic surface. If all the heat be absorbed by the ball, and the specific heat of platinum be $0^{\circ} 3_{2}$, find the rise of temperature.

Answer. $59^{\circ} \mathrm{C}$. nearly.

+ (ri.) A block of stone weighing a ton falls upon a glacier from a height of 800 feet. If one quarter of the heat generated by the stoppage of its motion enters the ice, how much ice will be melted ?

Let x be the number of pounds of ice melted ; then, since the heat generated by the fall

$$
\begin{aligned}
= & \frac{20 \times 112 \times 800}{1390}=1289^{\circ 2} \text { water-pound-degrees C. } \\
& \therefore x \times 80=\frac{1289^{\circ} 2}{4} \therefore x=4.03 \text { pounds nearly. }
\end{aligned}
$$

(12.) From what height would a block of ice at $0^{\circ} \mathrm{C}$. have to fall so that the heat generated by its collision with the earth should be just sufficient to melt it? From what height would it have to fall that the heat generated night be sufficient to convert it into steam ?

Answers. II 1,200 feet and 996,630 feet.
(I 3.) By what fraction of a degree Centigride is the temperature of the water of Niagara raised by its fall, the height being 164 feet?

Answer. $0^{\circ} 12^{\circ} \mathrm{C}$. nearly.
(14.) What must be the height of a waterfall that the temperature of the water may be raised $\mathrm{I}^{\circ} \mathrm{F}$. ?

Answer. 77^{2} feet nearly.
(15.$)$ What is the numerical value of Joule's equivalent when the kilogrammetre is taken as the unit of work ?

Since one foot $=3048$ metre,

$$
J=1390 \times 3048=423 \cdot 67=424 \text { nearly }
$$

N.B. The unit quantity of heat is in this case the quantity required to raise one kilogramme of water from $0^{\circ} \mathrm{C}$. to $\mathrm{I}^{\circ} \mathrm{C}$.
(16.) Some mercury drops from one vessel into another vessel 15 feet below it. By what fraction of a degree Centigrade will its temperature be raised, the specific heat of mercury being ${ }^{\circ} 33$? Answer. $\frac{1}{3}^{\circ}$ C. nearly.
(17.) One kilogramme of water at $100^{\circ} \mathrm{C}$. and at a pressure of $\mathrm{r}, 033.3$ grammes per square centimetre is converted into $\mathrm{I}, 695^{\circ}$ litres of steam at $100^{\circ} \mathrm{C}$. Taking the latent heat of steam at 537 and $\mathrm{J}=424$, calculate how much of the heat is spent in internal and how much on external work.
At $100^{\circ} \mathrm{C}$. one kilogramme of water occupies 1.043 litres.
 metres.

Also a pressure of $1033^{\circ} 3$ grammes per square centimetre corresponds to ro,333 kilogrammes per square metre, hence the external work done $=1.693957 \times 10333$ kilogrammetres, and the heat-equivalent $=\frac{1 \cdot 693957 \times 10333}{424}=41 \cdot 282$ units.

The heat expended on internal work
$=537-41^{\circ} 282=495^{\circ} 718$ units.
(18.) How much external work is done when one gramme of water at $100^{\circ} \mathrm{C}$. is converted into steam at $100^{\circ} \mathrm{C}$. ? Given that

At $100^{\circ} \mathrm{C}$. one gramme of water occupies 1.043^{2} c.c.
$" \quad, \quad$ steam " 1773.4 c.c. Answer. 18.3142 kilogrammetres.
(19.) How much work, in foot-pounds, is done when a pound of water is converted into a pound of steam ? Given that

Pressure of steam $=14$ pounds to the square inch.
One cubic foot of water weighs 62.5 pounds.
One cubic inch of water produces one cubic foot of steam. Answer. 55,706 foot-pounds.
(20.) A cube of iron I decimetre in the edge is heated up from the freezing to the boiling point of water. Taking the coefficient of linear expansion of iron for $I^{\circ} \mathrm{C}$. at -0000122 and the pressure of the air at 1,033 granmes per square centimetre, find the external work done by the cube in expanding. Answer. 3,780 gramme-centimetres.
(21) Express in metre-kilogramme units the quantity of work which would have to be expended in order to compress I gramme of steam at $100^{\circ} \mathrm{C}$. and 76 centimetres pressure into water at $100^{\circ} \mathrm{C}$. Answer. $\frac{537 \times 424}{1000}=227.688$.
(22.) Having given
(1) Density of mercury at $0^{\circ} \mathrm{C}$. $=13 \times 596$
(2) Mass of I litre of air at $0^{\circ} \mathrm{C}$. $\}=$ and 76 centimetres pressure $\}=\mathbf{1}^{2} 293^{2}$ grms.
(3) Specific heat of air at constant pressure = ${ }^{2} 37$
(4) Specific heat of air at constant volume $={ }^{167}$
find the value of the dynamical equivalent of heat.
At $\circ^{\circ} \mathrm{C}$. and 76 centimetres pressure
I gramme of air occupies . . $\} \frac{1200}{1 \cdot 293^{2}}$

$$
=773 \cdot 28 \text { c.c. nearly. }
$$

$\left.\begin{array}{c}\text { At } I^{\circ} \mathrm{C} \text {. and } 76 \text { centimetres pressure } \\ \mathrm{I} \text { gramme of air occupies . . }\end{array}\right\} 773^{\circ} 28\left(1+\frac{1}{273}\right)$

$$
=776.11 \mathrm{cc} \mathrm{c}
$$

\therefore increment of bulk $=2.83$ c.c.
$\left.\begin{array}{c}\text { The pressure of the air in grammes } \\ \text { per square centimetre } .\end{array}\right\}=76 \times 13.596$
$=1033^{\circ} 3$ grammes.
\therefore the work done by the air in expanding
$=1033^{\circ} 3 \times 2.83=2924^{\circ}$ gramme-centimetres.
But the heat absorbed in doing this

$$
={ }^{2} 37-{ }^{2} 67={ }^{\circ} 07 \text { gramme-degree. }
$$

Hence the dynamical equivalent of 1 water grammedegree Centigrade of heat, as deduced from this experiment, is

$$
\frac{2924^{\circ} 2}{\circ 07}=41774 \text { gramme-centimetres. }
$$

And \therefore the dynamical equivalent of I kilogramme-degree Centigrade is

41774 kilogramme-centimetres, or 417.74 kilogramme-metres.
(23.) A cubic metre of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure is heated up to $100^{\circ} \mathrm{C}$. at constant pressure. Find the quantity of heat expended on external work, having given that

Density of mercury at $0^{\circ} \mathrm{C}$. . $=13.596$
Specific heat of air at constant pressure $={ }^{\circ}{ }^{2} 37$
Dynamical equivalent of one water-gramme-degree \mathbf{C}.
. $=428 \mathrm{I} 3 \mathrm{gr} . \mathrm{cms}$.
Since I cubic metre of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure contains 1,293 grammes, the quantity of heat required to raise its temperature to $100^{\circ} \mathrm{C}$. at constant pressure is
$1293 \times 100 \times{ }^{2} 37=30644$ gramme-degrees.
The increment of volume is $\frac{100}{273}$ cubic metre, or $\frac{10^{8}}{273}$ c.c.
Hence the work done in pressing back the surrounding air is

$$
76 \times 13.596 \times \frac{10^{8}}{273} \text { gramme-centimetres, }
$$

and the heat-equivalent of this work is

$$
\frac{76 \times 13^{.596} \times 10^{8}}{273 \times 4^{2813}}=8840^{\circ} 7 \text { gramme-degrees. }
$$

Hence the fraction of the total heat which is expended on external work is

$$
\frac{8840 \%}{30644}=\cdot 29 \text { nearly }
$$

(24.) One gramme of air at $\circ^{\circ} \mathrm{C}$. and 76 centimetres pressure is heated to $r^{\circ} \mathrm{C}$. at constant pressure. With the data of Example 23, calculate the quantity of heat which is expended on external work. Answer. ©o68 of a w.-g. d. C. ${ }^{\circ}$
(25.) What is the value of the real specific heat of air at constant pressure?

The real specific heat of air at constant pressure, being the quantity of heat actually absorbed in raising the temperature of 1 gramme of air from $0^{\circ} \mathrm{C}$. to $\mathrm{I}^{\circ} \mathrm{C}$., is

$$
{ }^{2} 237-\cdot 068={ }^{1} 69 \text { w.-g.-d. C. }{ }^{\circ}
$$

(26.) What is the ratio of the apparent to the real specific heat of air at constant pressure? Answer. 1402.
(27.) The density of hydrogen gas at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure is 0000896 gramme. Assuming that the acceleration of gravity is 98 I centimetres per second, what is the average velocity of agitation of the molecules of hydrogen gas?

If v be the velocity of mean square of the molecules of a gas, p the pressure, and d the density, all in centimetre-gramme-second units, then by Maxwell's 'Heat,' p. 294, $3^{\text {rd }}$ edition,

$$
v^{2}=\frac{3 p p}{d .}
$$

In the present case $d={ }^{\circ} 0000896 ; p=76 \times 13.596 \times 98 \mathrm{r}$ absolute units of force.

$$
\therefore v=\sqrt{\frac{3 \times 76 \times 13.59^{6 \times 981}}{000089^{6}}}=184227 \text { centimetres }
$$

(28.) A litre of air at $0^{\circ} \mathrm{C}$. and $1033^{\circ} 3$ grammes pressure per square centimetre contains $\mathrm{I} \cdot 293$ grammes. Find the average velocity of the air-particles.

Answer. 484.96 metres per second.
(29.) The density of oxygen gas at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure is ${ }^{\circ} 0143$ gramme. Find the average velocity of the molecules of oxygen gas at $50^{\circ} \mathrm{C}$. and the same pressure.

The density of oxygen gas at $50^{\circ} \mathrm{C}$.

$$
=\frac{.00143 \times 273}{3^{2} 3}={ }^{0001208 \text { nearly. }}
$$

$\therefore v=\sqrt{\frac{3 \times 76 \times 13.596 \times 98 \mathrm{I}}{001208}}=50160$ centimetres
per second.
(30.) What is the average velocity of the molecules of oxygen gas at 76 centimetres pressure and at the temperature of melting ice? Answer. $46{ }^{\prime} \cdot 15$ metres per second.
(3I.) What is the average velocity of the oxygen molecules at the same pressure but at $80^{\circ} \mathrm{C}$. ?

Answer. $524^{\circ 2} 3$ metres per second.
(32.) Assuming that oxygen were still a perfect gas at - $200^{\circ} \mathrm{C}$., what would be the average velocity of the molecules at the same pressure as before?

Answer. 238.47 metres per second.
(33.) The work done by one theoretical 'horse' per minute is 33,000 foot-pounds. Express this in 'ergs' per second.

The centimetre-gramme-second (c.-G.-s.) unit of force, which is called a dyne, is that force which, acting on a gramme of matter for 1 second, generates in it a velocity of i centimetre per second. The force of gravity in London may be taken as 981 such units.

The c.-G.-s. unit of work is called an erg. The work done in raising a gramme through I centimetre against gravity is 981 ergs.

Also 1 foot $=30.4797$ centimetres ; \mathbf{x} pound $=453.59$ grammes.
\therefore one horse-power $=\frac{33000}{60}$ foot-pounds per second.
$=\frac{33000 \times 30^{\circ} 4797 \times 453^{\circ} 59 \times 98 \mathrm{I}}{60}$ ergs per second.
$=7.4594 \times 10^{9}=7.46 \times 10^{9}$ ergs per second nearly.
(34.) From the data of Example 22 we found that thedynamical equivalent of I water-gramme-degree Centigrade of heat is 41,774 gramme-centimetres. Express this in absolute units.

$$
\begin{gathered}
\text { Answer. One w.-g.d. } \mathrm{C} .{ }^{\circ}=41774 \times 98 \mathrm{I} \\
=4.098 \times 10^{7} \text { ergs. }
\end{gathered}
$$

(35.) In practice the dynamical equivalent of i w.-g.-d. C. ${ }^{\circ}$ of heat is usually taken to be 4.2×10^{7} ergs. Find the dynamical equivalent of 1 water-pound-degree Centigrade of heat.

Answer. $1{ }^{\circ} 91 \times$ IO 10 ergs nearly.
(36.) A bullet weighing 250 grammes strikes a target with a velocity of 300 metres per second. Express in water-kilogramme-degrees Centigrade the quantity of heat which will be generated by the collision.

The kinetic energy of the bullet at the moment of striking the target, being equal to one-half the product of its momentum and its velocity, is

$$
\frac{m v^{2}}{2}=\frac{250 \times(30000)^{2}}{2} \text { ergs. }
$$

And by the data of Example 35 the dynamical equivalent of I kilogramme-degree Centigrade of heat is $4.2 \times 10^{10} \mathrm{ergs}$.
\therefore the quantity of heat developed by the collision is

$$
\frac{250 \times(30000)^{2}}{2 \times 4^{.2} \times 11^{10}}=2.679 \text { units nearly. }
$$

(37.) A 1,700 -pound shot from an 80 -ton gun strikes a target win a velocity of $\mathrm{I}, 496$ feet per second. Express in
water-pound-degrees Centigrade the quantity of heat generated by the collision.

The acceleration of gravity being 32.2 foot-second units, the dynamical equivalent of I water-pound-degree Centigrade in absolute measure is $1390 \times 32^{2} 2$ units, and
\therefore the heat generated by the collision is

$$
\frac{1700 \times(1496)^{2}}{2 \times 3^{2} 2 \times 1390}=42502 \text { w.-p.-d. C. }{ }^{\circ}
$$

(38.) A 700-pound shot strikes an armour plate with a velocity of 1,600 feet per second. What quantity of heat is developed by the blow? Answer. 20,019 w.-p.-d. C. ${ }^{\circ}$
(39.) Herschell calculated that the average velocity of a shooting star is 35 miles per second, and its average mass 2 ounces. When its motion is suddenly arrested what quantity of heat is developed?

The kinetic energy of the moving mass expressed in foot-pound-second units is
$\frac{1}{8} \times \frac{(35 \times 1760 \times 3)^{2}}{2}$ units, and the heat-equivalent of this is

$$
\frac{(35 \times 1760 \times 3)^{2}}{8 \times 2 \times 3^{2} \cdot 2 \times 1390}=47688 \text { w.-p.-d. C. }{ }^{\circ}
$$

(40.) The specific heat of iron being $0 \cdot 11$, find the velocity with which a mass of iron must strike a hard nonconducting surface, so as to have its temperature raised $\mathrm{I}^{\circ} \mathrm{C}$.

Let $m=$ mass of iron in grammes,
$v=$ velocity in centimetres per second, then its kinetic energy $=\frac{m v^{2}}{2}$ ergs,
and the heat equivalent of this $=\frac{m v^{2}}{2 \times 4^{.2} \times 10^{7}}$ w.-g.d. C. ${ }^{\circ}$
\therefore the rise of temperature $=\frac{v^{2}}{2 \times 4^{2} 2 \times 10^{7} \times 11}=\mathrm{I}$ by the question.

From this equation we get

$$
y=3039.74 \text { centimetres per second. }
$$

(41.) The melting-point of lead being $326^{\circ} \mathrm{C}$., the specific
heat of solid lead ${ }^{\circ} 314$, and the latent heat of fusion $5 \% 4$, find the velocity with which a leaden bullet must strike a target so that if all the heat generated by the collision were absorbed by the bullet it might be completely melted, its initial temperature being $10^{\circ} \mathrm{C}$.

Answer. 358.76 metres per second.
(42.) The mass of a railway truck and its contents is io tons and the resistance is 7.5 pounds a ton. It is drawn from rest by a horse, and after going 250 feet is observed to be moving at the rate of 4 feet per second. How much heat has been expended by the horse in doing this work ?

The kinetic energy of the moving truck

$$
=\frac{10 \times 20 \times 112 \times 16}{2 \times 32.2}=5565^{\circ 2} \text { foot-pounds. }
$$

The work done in moving io tons 250 feet

$$
=75 \times 250=18750 \text { foot-pounds. }
$$

\therefore total work done by the horse

$$
=55^{6} 5^{\circ}+1875^{\circ}=24315^{\circ} \text { foot-pounds; }
$$

and the heat-equivalent of this is

$$
\frac{24315^{\circ} 2}{1390}=17.49 \text { w.-p.-d. C. }{ }^{\circ}
$$

(43.) How much heat is developed in stopping a rallway train of 60 tons which is running on the level at the rate of 45 miles an hour? Answer. 6540^{\prime} I w.-p.-d. C. ${ }^{\circ}$
(44.) The mass of a railway train 15100 tons and the friction is 7 pounds per ton. How many units of heat must be expended in drawing it for 4 miles up an incline of I in 200 ?

Since I mile $=5280$ feet and I ton $=2240$ pounds,
The work done against gravity
$=100 \times 2240 \times 105^{\circ} 6=23654400$ foot-pounds.
The work done aqainst friction
$=100 \times 7 \times 4 \times 5280=14784000$ foot-pounds.
\therefore total work $=3^{8} 438400$ foot-pounds.
And the heat equivalent

$$
=\frac{38438400}{1390}=27654 \text { w.-p.d. C. }{ }^{\circ} \text { nearly. }
$$

(45.) The mass of the earth being 6.069×10^{21} tons, and its average rate of translation round the sun 33,290 yards per second, find the number of tons of coal which would have to be burnt to produce a quantity of heat equal to that which would be developed by the sudden stoppage of the earth's motion of translation.

The heat-equivalent of the kinetic energy is, according to the method of Example 39,

$$
\frac{10^{21} \times(6.069 \times 2240) \times(3 \times 33290)^{2}}{2 \times 3^{2} 2 \times 1390} \text { w.-p.-d.C. }{ }^{\circ}
$$

and assuming that a pound of coal in burning gives out 8,000 pound-units of heat, the required quantity of coal is

$$
\frac{10^{21} \times(6.069 \times 2240) \times\left(3 \times 33^{290}\right)^{2}}{2 \times 3^{2.2} \times 1390 \times(8000 \times 2240)}=84.527 \times 10^{21} \text { tons. }
$$

That is to say, the quantity of heat would be equal to that produced by the sudden and complete combustion of a mass of coal about 14 times that of the earth.
(46.) Find the quantity of heat which would be developed by the sudden stoppage of the rotation of the earth.

The moment of inertia of a sphere of mass m and radius r which is rotating about a diameter is $\frac{2}{5} m r^{2}$, and if ω be the angular velocity of a body rotating about an axis passing through its centre of gravity, then (vide Routh's 'Rigid Dynamics,' § 194, edition of 1860)

$$
\Sigma m v^{2}=w^{2} \mathrm{MK}^{2}
$$

Hence, if r be expressed in feet and m in pounds, the kinetic energy of the earth in virtue of its rotation upon its axis is

$$
\frac{2}{5} \times \frac{m r^{2} \omega^{2}}{2 \times 3^{2.2}}, \quad \text { But } \omega=\frac{2 \pi}{24 \times 60 \times 60}
$$

\therefore kinetic energy $=\frac{2}{5} \times \frac{m r^{2}}{2 \times 3^{2.2}} \times \frac{4 \pi^{2}}{(24 \times 60 \times 60)^{2}}$,
and then, proceeding as in Example 45, the number of tons of coal iequired is

$$
\begin{gathered}
\frac{10^{21} \times(6.069 \times 2240) \times(4000 \times 1760 \times 3)^{2} \times \pi^{2}}{5 \times 32.2 \times(12 \times 3600)^{2} \times 1390 \times 179^{2} \times 10^{4}} \\
=7.9966 \times 10^{18} \text { tons. }
\end{gathered}
$$

HEAT-ENGINES.

(r.) In a certain heat-engine the temperature of the source is $130^{\circ} \mathrm{C}$. and that of the refrigerator is $22^{\circ} \mathrm{C}$. Supposing that the engine is a 'perfect engine,' what is its efficiency?

If w be the work done by an engine when a quantity of heat $\boldsymbol{н}$ is abstracted from the source, both being estimated in dynamical measure, then the ratio $\frac{\mathrm{W}}{\mathrm{H}}$ is termed the 'efficiency' of the engine. If T and t be the absolute temperatures of the source and refrigerator, then (Maxwell's 'Heat,' p. 160, 3rd edition),

$$
\begin{aligned}
\frac{w}{H} & =\frac{T-t}{T} \\
& =\frac{130-22}{130+273}=\frac{108}{403}=\cdot 268 \text { nearly. }
\end{aligned}
$$

(2.) Find the maximum efficiency of an engine working between the temperatures $148^{\circ} \mathrm{C}$. and $48^{\circ} \mathrm{C}$. Answer. ${ }^{2} 38$.
(3.) An engine which is to be considered as a 'perfect engine' is supplied with heat from a source at $200^{\circ} \mathrm{C}$., and gives out heat to a condenser at $80^{\circ} \mathrm{C}$. If the engine be supposed to work at the rate of 8 horse-power, calculate the quantity of heat which is taken from the source, and the quantity of heat which is given out to the condenser per hour.

The efficiency of this engine is $\frac{200-80}{200+273}={ }^{2} 2537$.
The work done per hour

$$
=8 \times 60 \times 33000=15840000 \text { foot-pounds }
$$

The heat-equivalent of this

$$
=\frac{15840000}{1390}={ }^{11} 395^{\circ} 7 \text { pound-units. }
$$

But if $\boldsymbol{н}$ be the quantity of heat taken from the source, $\mathrm{H} \times 2537$ is converted into work, and therefore H ($\mathrm{I}-{ }^{\circ} 2537$) or $\mathrm{H} \times 7463$ is given out to the condenser.

$$
\begin{aligned}
\text { And } н \times 2537 & =11395^{\circ} 7 \\
\therefore \text { н } & =\frac{11395^{\circ} 7}{{ }^{2} 537}=44918 \text { pound-units, }
\end{aligned}
$$

and the quantity of heat given out to the condenser is н $\times{ }^{\prime} 7^{6} 6_{3}=44918 \times 746_{3}=33522$ pound-units.
(4.) An air-engine takes in heat at $350^{\circ} \mathrm{F}$. and gives out heat at $40^{\circ} \mathrm{F}$. Assuming it to be a perfect reversible engine, what is its 'efficiency'? Answer. 383 nearly.
(5.) A certain steam-engine which is assumed to be a 'perfect' engine works between the temperatures $170^{\circ} \mathrm{C}$. and $80^{\circ} \mathrm{C}$. How much work can be done by the withdrawal of 100 pound-degrees of heat from the boiler?

The efficiency $=\frac{170-80}{170+273}={ }^{\cdot 2032}$,
and the dynamical equivalent of the heat utilised is

$$
\cdot 2032 \times 100 \times 1390=28244^{\circ} 8 \text { foot-pounds }
$$

(6.) Another engine works between the temperatures $120^{\circ} \mathrm{C}$. and $30^{\circ} \mathrm{C}$. What is the maximum output of work for 100 thermal units supplied by the boiler?

Answer. 31,832 foot-pounds.
(7.) What proportion of the heat received by the water in the boiler of an engine would be converted into work if
the temperature of the steam were $250^{\circ} \mathrm{C}$. and that of the condenser $30^{\circ} \mathrm{C}$., supposing the engine to be 'reversible'? Answer. 421 nearly.
(8.) A quantity of dry air which occupies 20 litres at $15^{\circ} \mathrm{C}$. and 76 centimetres pressure is suddenly compressed so that its pressure rises to 152 centimetres. Assuming that there is no opportunity for the heat to escape, what will be the change in its temperature?

If γ be the ratio of the specific heat of air at constant pressure to its specific heat at constant volume, and $p_{2}, p_{\text {, }}$, t_{2} and t_{1} be the final and initial pressures and absolute temperatures of a quantity of air of which the volume changes without any loss or gain of heat from without, then it is proved in text-books on 'Thermodynamics' that

$$
\begin{gathered}
\frac{t_{2}}{t_{1}}=\binom{p_{2}}{p_{1}}^{\frac{\gamma-1}{\gamma}} \\
\gamma=1408 \therefore \frac{\gamma-1}{\gamma}=\frac{408}{1 \cdot 408}=\cdot 29 \\
t_{1}=15+273=288^{\circ} \mathrm{C} \\
\therefore t_{2}=288 \times(2)^{29}=35^{\prime} \cdot \mathrm{I}
\end{gathered}
$$

But
and
\therefore temperature required $=35^{\circ} \mathrm{I}-273=79^{\circ} \mathrm{I}^{\circ} \mathrm{C}$.
(9.) A quantity of gas at $15^{\circ} \mathrm{C}$ and 20 atmospheres pressure has its pressure suddenly reduced to I atmosphere. What will be the fall in its temperature?

$$
\text { Answer. }-167.2^{\circ} \mathrm{C} .
$$

(ro.) A quantity of dry air is at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure. What pressure must be suddenly applied so as to raise its temperature by $\mathrm{I}^{\circ} \mathrm{C}$. ?

If x be the required pressure expressed in centimetres of mercury, then we have

$$
\begin{aligned}
\left(\frac{x}{76}\right)^{.29} & =\frac{t_{2}}{t_{1}}=\frac{274}{273} \\
\therefore x & =76\left(\frac{274}{273}\right)^{\frac{1}{29}}=76.964 .
\end{aligned}
$$

\therefore increment of pressure $=964$ centimetre of mercury.
(11.) What increase of pressure in grammes per square centimetre does this correspond to ?

$$
\text { Anszer. } 964 \times 13.596=13.106
$$

(12.) What rise of temperature will be produced in a quantity of gas by suddenly compressing it by $\frac{1}{273}$ rd of its bulk at $0^{\circ} \mathrm{C}$. ?

When a quantity of gas is suddenly compressed without addition or subtraction of heat, the bulk and the temperature are connected by the relation

$$
\begin{gathered}
\frac{t_{2}}{t_{1}}=\left(\frac{v_{1}}{\gamma_{2}}\right)^{\gamma-1 .} \\
\text { But } \frac{v_{1}}{v_{2}}=\frac{273}{272} ; \gamma-1=408 \text { and } t_{1}=273^{\circ} \mathrm{C} . \\
\therefore t_{2}=273 \times\left(\frac{273}{27^{2}}\right)^{-408}=273.41^{\circ} \mathrm{C} .
\end{gathered}
$$

\therefore rise of temperature $=41^{\circ} \mathrm{C}$.
(13.) The initial pressure of steam in a cylinder where the stroke is 5 feet is 40 lbs ., and expansion commences when 2 feet of the stroke have been performed. Find the pressure at the end of the stroke, and the percentage of gain in the work done by a given quantity of steam in consequence of expansive working.
Let $a=$ length of stroke in feet,
$b=$ distance moved by piston when the steam-supply is cut off,
P $\quad p=$ initial pressure of the steam in the cylinder,
$x=$ number of feet described by piston at any part of stroke,
$p=$ corresponding pressure of the steam.
Then assuming that the expansion is according to Boyle's law, ${ }^{1}$

$$
\frac{p}{\mathrm{p}}=\frac{b}{x} \therefore p=\frac{b \times \mathrm{p}}{x} \text {, }
$$

- Boyle's law requires that the temperature should be constant, and therefore the cylinder must be surrounded by a hot steam-jacket to maintain the temperature of the steam, which loses heat by the work done in its expansion.
and in the present case

$$
\left.\begin{array}{l}
x=5 \\
b=2 \\
\mathrm{P}=40
\end{array}\right\} \therefore p=\frac{2 \times 40}{5}=16 \mathrm{lbs} .
$$

In order to find the work done by the steam in expanding, let $d x$ be a very small element of the length of the stroke, throughout which we may consider the pressure as uniform and equal to p; then the work done during this portion of the stroke is

$$
d \mathrm{~W}=p d x=b \times \mathrm{P} \times \frac{d x}{x}
$$

and the whole work done during the expansion of the steam is

$$
\begin{aligned}
& \mathrm{w}=b \times \mathrm{P} \times \int_{b}^{a} \frac{d x}{x}=b \times \mathrm{P} \log \cdot \mathrm{e} \frac{a}{b} \\
&=b \times \mathrm{P} \times 2.30258 \times \log .10 \frac{a}{b}, \\
&=2 \times 40 \times 2.30258 \times \log .2 .5=73.3 \text { foot-pounds, }
\end{aligned}
$$

and the work done before expansion commences is

$$
40 \times 2=80 \text { foot-pounds. }
$$

\therefore the gain per cent. is $\frac{73.3 \times 100}{80}=91 \frac{5}{8}$ per cent.
(I4.) If the area of the piston in the last Example is 2,000 square inches, and the number of strokes per minute 3 I , what is the horse-power?

Total work done per square inch of piston during one stroke is $80+73^{\circ} 3=153^{\circ} 3$ foot-pounds.
\therefore total work done on the piston in one minute is $153.3 \times 2000 \times 31$ foot-pounds.
\therefore horse-power $=\frac{153.3 \times 2000 \times 31}{33000}=288.02$ horse-power.
(15.) Two steam-engines develope the same power, and have each a 5 -feet stroke. The cylinder of one engine is 3 feet 6 inches in diameter, and is worked with a steam
pressure of 45 lbs . per square inch right through the stroke. The other engine is worked with the same initial pressure of steam, but the cut-off is at half-stroke. What must be the diameter of its cylinder?

Work done by first engine per stroke $=45 \times 5 \times \pi \times(2 \mathrm{I})^{2}$ $=311725$ foot-pounds, and if x be the number of inches in the diameter of the second cylinder, by the method of Example I_{3} we have for the work done during one stroke

$$
\begin{aligned}
& \pi \times \frac{x^{2}}{4} \times 2.5 \times 45\left\{\mathrm{I}+\log _{\cdot \mathrm{e}} 2\right\} \\
& =\pi \times \frac{x^{2}}{4} \times 2.5 \times 45 \times 1.693 \mathrm{I} 47,
\end{aligned}
$$

$=311725$ by the question.

$$
\therefore x^{2}=\frac{4 \times 311725}{\pi \times 2.5 \times 45 \times 1.693147},
$$

whence $x=45^{\circ} 65$ inches nearly, or 3 feet 9.65 inches.
(16.) In a compound engine the average pressure in the large cylinder is 23 lbs ., and the diameter is 90 inches, the length of stroke in both cylinders being 5 feet. The steam enters the smaller cylinder at 84 lbs . pressure, and is cut off at $\frac{1}{5}$ th of the stroke. What must be the diameter of the smaller cylinder so as to develope the same horse-power as the large one? Answer. 65 inches nearly.
(17.) The length of the stroke of a steam-engine is 4 feet 6 inches, the boiler pressure is 1o lbs. above that of the atmosphere, which is 15 lbs ., and the steam is cut off after the piston has traversed 2 feet 6 inches. Find the pressure of the steam in the cylinder when it opens to the exhaust, which is 2 inches before the piston arrives at the end of a stroke.

Assuming the exhaust to be perfect, the total pressure of the steam before the supply is cut off is $10+15=25 \mathrm{lbs}$., and the steam pressure is continued for 4 feet 4 inches.

With these data, by the method of Example 13, we find that the required pressure $=14.42 \mathrm{lbs}$.
(18.) The length of the stroke of a steam-engine is 5 feet

6 inches, and the boiler pressure is 27 lbs . to the inch. The supply of steam is cut off after the piston has traversed 2 feet. Find the pressure of the steam when it opens to the exhaust, which is 2 inches before the piston arrives at the end of a stroke.

Answer. $10 \frac{1}{8} \mathrm{lbs}$.
(19.) The length of the stroke of an engine is 6 feet, and the pressure of the steam on entering the cylinder is 36 lbs . to the inch. At what point of the stroke should the steam be cut off so that the pressure at the end of the stroke may be 6 lbs . to the square inch ?

Let $y=$ number of feet travelled by the piston when steam is cut off.

Then, by the formula in Example 13, we have

$$
y=\frac{p \times x}{P}=\frac{6 \times 6}{3^{6}}=\mathrm{I} \text { foot. }
$$

(20.) Steam enters a cylinder at 72 lbs . pressure, and the length of stroke is 7 feet. If the pressure at the end of the stroke is to be 18 lbs ., at what point of the stroke must the steam be cut off? Anszer. 2I inches.
(21.) The length of stroke is 4 feet, and the pressure at the end of the stroke is 8 lbs ., the steam being cut off when the piston has travelled one foot. At what pressure was the steam admitted to the cylinder?

Answer. 32 lbs. to the inch.
(22.) Find the initial pressure of the steam in a cylinder when the final pressure is 12 lbs ., the length of stroke 6 feet, and cut-off taking place when the piston has travelled 18 inches.

Answer. 48 lbs.
(23.) The piston of an engine moves through 18 inches under a pressure of 36 lbs . to the square inch, and the steam is then cut off from the boiler and allowed to expand. What will be the pressure when the piston has moved through another foot?

By the method of Example 13 we have

$$
p=\frac{b}{x} \times \mathrm{P}=\frac{18 \times .36}{30}=21 \frac{3}{5} \mathrm{lbs} \text {. to the square inch. }
$$

(24.) Find the pressure of the steam in a cylinder when the piston has travelled 4 feet, the whole length of stroke being 5 feet, the initial pressure 80 lbs ., and cut-off taking place when the piston has completed $\frac{1}{5}$ th of the stroke.

Answer. 20 lbs .
(25.) Steam enters a cylinder at 72 lbs. pressure, and is cut off from the boiler when the piston has travelled 16 inches. What will be the pressure of the steam when the piston has moved through another 20 inches?

Answer. 3_{2} lbs.
(26.) The diameter of each cylinder of a locomotive engine is 18 inches, and the length of stroke is 2 feet, the steam being cut off at $\frac{1}{4}$ of the stroke. The steam when admitted to the cylinder is at the pressure of 70 lbs . to the inch, and the crank makes 58 revolutions a minute. Find the horse-power.

By the method of Example 13 we find that the work done by the steam in each cylinder per stroke on each square inch of the piston is
83.52 foot-pounds nearly,
and the work done by both pistons in one minute is
$2 \times 58 \times \pi \times 8 \mathrm{r} \times 83^{\circ} 5^{2}=2465382$ foot-pounds.

$$
\therefore \text { н.-Р. }=\frac{2465382}{33000}=74 \cdot 7 \text { nearly. }
$$

(27.) The diameter of the piston in a non-expanding, double-acting engine is 16 inches. Its length of stroke is 4 feet 6 inches, and it makes 50 complete strokes per minute. The steam pressure is 17 lbs ., and the mean value of the opposing pressure is $\mathrm{I} \frac{1}{2} \mathrm{lb}$. to the square inch. What is the horse-power?

Pressure on piston

$$
=\pi \times 8^{2}\left(17-1 \frac{1}{2}\right)=\pi \times 64 \times 15^{\circ} 5 \mathrm{lbs} .
$$

\therefore work done per minute

$$
\begin{aligned}
& =2 \times 50 \times \pi \times 64 \times 15.5 \times 4.5, \\
& =14024 \text { ro foot-pounds. }
\end{aligned}
$$

$$
\therefore \text { H. }- \text { P. }=\frac{1402410}{33000}=42^{\circ} 5 \text { nearly. }
$$

(28.) The length of stroke of an engine is 5 feet, and the load is 20 lbs . to the square inch. If the steam is cut off when $\frac{1}{8}$ th of the stroke has been completed, find the pressure at which the steam was admitted.

By the formula in Example 1_{3} we find that

$$
\mathrm{P}=6_{2} \cdot \mathrm{I} 3 \mathrm{lbs} . \text { to the square inch. }
$$

(29.) How much water must be evaporated per minute so as to supply the requisite quantity of steam to fill a cylinder 36 times a minute? The length of the cylinder is 5 feet, its diameter is 5^{2} inches, and the volume of the steam is 1,240 times that of the water from which it is formed.

Volume of water required

$$
=\pi \times\left(\frac{26}{12}\right)^{2} \times \frac{5 \times 36}{1240}=2.141 \text { cubic feet. }
$$

(30.) The cylinder of an engine is 70 inches in diameter and the length of stroke is 7 feet. How much water must be evaporated per minute in order to fill this cylinder with steam 40 times, the volume of the steam at the pressure at which it is used being 1,400 times that of the water from which it is generated? Answer. $5 \% 345$ cubic feet.
(

MISCELLANEOUS EXERCISES.

CHIEFLY TAKEN FROM EXAMINATION PAPERS.

(1.) A Fahrenheit thermometer and a Centigrade thermometer when placed in different enclosures both indicate 72°. What is the difference between the temperatures of these two enclosures?

Answer. $49^{\frac{7}{9}} \mathrm{C}$.
(2.) An iron yard measure is correct at the temperature of melting ice. What will be its error at the temperature of boiling water, the coefficient of expansion of iron being 000012 ? Answer. 0432 of an inch too long. (Sc. and A.)
(3.) The coefficient of expansion of mercury is $\frac{1}{5550}$ and its density at $0^{\circ} \mathrm{C}$. is 13.59 . What will be the bulk of 30 kilogrammes of mercury at $85^{\circ} \mathrm{C}$. ? Answer. $2{ }^{\circ} 24$ litres.
(4.) What is the length of a bar of lead which expands as much for a given change of temperature as a bar of steel 3 metres long, the coefficient of expansion of lead being to that of steel as $351: 927$? Answer. 7.923 metres.
(5.) What must be the length of a bar of zinc which will expand as much for a given change of temperature as a bar of iron 2 metres long, the coefficient of expansion being to that of zinc as $340: 795$? Answer. 85.5 centimetres.
(6.) The ratio of the masses of equal bulks of water at $4^{\circ} \mathrm{C}$. and of copper at $0^{\circ} \mathrm{C}$. is 8.88 , the coefficient of cubical expansion of copper is $\frac{1}{38^{2} 00}$, and the expansion of unit volume of water between 4° and $15^{\circ} \mathrm{C}$. is $\frac{1}{190^{\circ}}$. Find the density of copper with respect to water at $15^{\circ} \mathrm{C}$. Answer. 8.943.
(7.) One hundred cubic centimetres of air at $0^{\circ} \mathrm{C}$. are heated to $300^{\circ} \mathrm{C}$. under constant pressure. What will be the volume of the air at the higher pressure, the coefficient of expansion being 00366 ?

Answer. 209.8 c.c. (M.)
(8.) The coefficient of expansion of atmospheric air for the Centigrade scale is $\frac{1}{273}$. Find the temperature to which 500 cubic centimetres of air (measured at $15^{\circ} \mathrm{C}$.) must be raised in order that its volume may become 700 cubic centimetres, no change of pressure taking place meanwhile.

Answer. $130 \cdot 2^{\circ} \mathrm{C}$. (M.)
(9.) One gallon of air ($277 \frac{1}{4}$ cubic inches) is heated under constant pressure from $0^{\circ} \mathrm{C}$. to $75^{\circ} \mathrm{C}$. Calculate the volume of the air at the latter temperature, assuming the coefficient of expansion to be 00366 .

Answer. 353.36 cubic inches nearly.
(M.)
(10.) A room is calculated to hold 60 cubicmetres of air at $10^{\circ} \mathrm{C}$. and 700 millimetres pressure. What would be the volume of this same quantity of air if it were measured at $o^{\circ} \mathrm{C}$. and 760 millimetres pressure?

Answer. 53.31 cubic metres. (M.)
(II.) The coefficient of expansion of oxygen is $\frac{11}{3000}$, and 500 cubic centimetres of oxygen gas are measured when the temperature is $20^{\circ} \mathrm{C}$., and the temperature is then raised to $40^{\prime} \mathrm{C}$., the pressure meanwhile remaining invariable. What is the volume of the oxygen at the latter temperature?

$$
\begin{equation*}
\text { Answer. } 531 \text { c.c. nearly. } \tag{M.}
\end{equation*}
$$

(12.) A thousand cubic inches of air at the temperature of $30^{\circ} \mathrm{C}$. are cooled down to zero, and at the same time the external pressure upon the air is doubled. What is its volume reduced to, the coefficient of expansion of air being 00366 ?

Answer. 450.53 cubic inches.
(13.) A bottle is filled with air at the pressure of 76 centimetres of mercury and at the temperature of $25^{\circ} \mathrm{C}$.; the bottle is securely corked and the temperature is reduced to $0^{\circ} \mathrm{C}$. What will now be the pressure of the air?

$$
\text { Answer. } 69.62 \text { centimetres of mercury. }
$$

(14.) A Marriotte's tube has a uniform section of one square inch and is graduated in inches. Six cubic inches of air are enclosed in the shorter (closed) limb when the mercury is at the same level in both tubes. What volume of mercury must be poured into the longer limb in order to compress the air into two inches? Answer. 72 cubic inches. (Ist B. Sc.)
(15.) Given the weight of one litre of dry air under the
normal conditions as 14.42 criths, what will be the weight of one litre of dry air at the normal temperature but under a pressure of 72 centimetres?

Answer. 13.67 criths.
N.B. The crith is the quantity of hydrogen in one litre at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure.
(16.) The volume of nitrugen in a bell jar standing over a mercury pneumatic trough was 250 c.c. The barometer was at 75.4 centimetres, and the difference of level of the mercury inside and outside the jar was 6.5 centimetres. Reduce this volume to standard pressure. Answer. 226.7 c.c.
(17.) A volume of 64 cubic feet of air under a pressure of $29^{\circ} 4^{\circ}$ inches of mercury and at a temperature of $15^{\circ} \mathrm{C}$. is heated to a temperature of $100^{\circ} \mathrm{C}$., and the pressure is increased to 30 inches. Find the resulting volume, the coefficient of expansion being $\frac{1}{273}$. Answer. 81.24 cubic feet. (Sc. and A.)
(18.) A closed vessel which displaces one litre of air is counterpoised on a balance with weights whose volume is inconsiderable when compared with that of the vessel. The balance is in equilibrium when the barometer stands at 76 centimetres. If the barometer fall to 71 centimetres, what weight must be added so as to restore the equilibrium?

$$
\text { Answer. } 85 \text { milligrammes. }
$$

(19.) A body is weighed in air and in water which are both at the temperature of $20^{\circ} \mathrm{C}$. Determine its volume and specific gravity at this temperature from the following data :-

(20.) A solid weighs 320 grammes in vacuo, 240 grammes in distilled water at $4^{\circ} \mathrm{C}$., and 242 grammes in water at $100^{\circ} \mathrm{C}$. of which the density is 0.959 . Find the volume of the solid at
these two temperatures, and deduce therefrom its mean coefficient of cubical expansion for $I^{\circ} \mathrm{C}$. Answer. 0001738.
(Ist B. Sc.)
(2I.) Suppose that the proportional cubical internal expansion of a glass specific gravity bottle between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. is 00235 while the similar expansion of mercury is ${ }^{\circ} \mathrm{O} 8153$. Suppose also that when the bottle contains a piece of iron weighing 2,000 grains the remainder of it will contain $6,707 \cdot 8$ grains of mercury at $0^{\circ} \mathrm{C}$., while at $100^{\circ} \mathrm{C}$. under these circumstances it will only contain $6,599 \cdot 4$ grains. Finally, assume that the specific gravities of mercury and iron at $100^{\circ} \mathrm{C}$. are 13.2 and 7.8 respectively. Determine the cubical dilatation of iron between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.

Answer. ©0364.
(2nd B. Sc.)
(22.) A solid is weighed in a liquid at $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$. The volume of the solid at $0^{\circ} \mathrm{C}$. is unity and at $100^{\circ} \mathrm{C}$. it is 1.006. Also the loss of weight by weighing in the liquid is, at 0° C. 1,800 grains, and at $100^{\circ} \mathrm{C}$. it is 1,750 grains. Find the coefficient of dilatation of the liquid. Answer. 0003474.
(ist B. Sc.)
(23.) Assuming that the mean coefficient of expansion of mercury for $I^{\circ} \mathrm{C}$. is 0001815 and that of the glass of a thermometer 000026 , find the reading of such a thermometer of which the bulb is plunged into water at the temperature of $100^{\circ} \mathrm{C}$. while the stem is exposed to air at the temperature of $10^{\circ} \mathrm{C}$.

$$
\text { Answer. } 98 \cdot 62 \text {. (2nd B. Sc.) }
$$

(24.) At what temperature does a litre of air weigh one gramme when the pressure is 77 centimetres, the coefficient of expansion of air being 00366 and the mass of a litre of air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure being $1 \cdot 293$ gramme ?

$$
\text { Answer. } 84: 7^{\circ} \mathrm{C}
$$

(25.) The coefficient of linear expansion of iron for $1^{\circ} \mathrm{C}$. being 0000122 , what will be the area of an iron disc at $60^{\circ} \mathrm{C}$. whose diameter at $0^{\circ} \mathrm{C}$. is 2.75 metres?

Answer. 5.9483 square metres.
(26.) Find the capacity of a flask which weighs 263528 grammes empty, and 375.826 grammes when filled with air at $4^{\circ} \mathrm{C}$. and 76 centimetres pressure. Also, when the flask is filled
with a certain gas at $4^{\circ} \mathrm{C}$. and 8I centimetres pressure it weighs 293.687 grammes. Find the deusity of this gas.

Answer. Capacity of flask . . -87.64 litres. Absolute density of the gas $=\quad 000323$ gramme.
(27.) An English barometer with a brass scale giving true inches at the temperature of $62^{\circ} \mathrm{F}$. reads $29^{\circ} 5$ inches at $45^{\circ} \mathrm{F}$. What is the pressure in true inches of mercury reduced to the specific gravity it has at $32^{\circ} \mathrm{F}$.?

Coefficient of linear expansion of brass for $I^{\circ} \mathrm{F}$. is 00001 .
" cubical Answer. 29.445 inches." (ist B. Sc.)
(28.) A given quantity of air occupies a volume of 600 cubic inches at a temperature of $20^{\circ} \mathrm{C}$. Find the volume which the air will occupy at $100^{\circ} \mathrm{C}$., supposing the pressure to remain constant. The coefficient of expansion of air is 003665 .

$$
\text { Answer. } 763 \cdot 8 \text { cubic inches. (Sc. and A.) }
$$

(29.) The coefficient of absolute expansion of mercury being $\frac{1}{5550}$ and its coefficient of apparent expansion being $\frac{1}{6880}$, find the coefficient of cubical expansion of glass.

$$
\text { Answer. } \frac{1}{386 \cdot 7 \mathrm{I}} \text { nearly. (Sc. and A.) }
$$

(30.) The diameter of a spherical hot-air balloon is 2.5 metres, and the paper of which it is made weighs io grammes per square metre. The temperature of the atmosphere is $7^{\circ} \mathrm{C}$. and the pressure 76 centimetres. The coefficient of expansion of air being 00360 , what must be the temperature of the air in the balloon so that it may just be able to rise ?

$$
\text { Answer. } 12.4^{\circ} \mathrm{C} .
$$

(3I.) The mass of an empty flask is 247.862 grammes. When filled with air at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure it is 263.759 grammes, and when filled with another gas at $0^{\circ} \mathrm{C}$. and 74 centimetres pressure it is 267.078 grammes. Find the relative density of this gas. (Air = 1.) Answer. I•II.
(32.) An empty flask weighs 152.475 grammes. When full of dry air it weighs 168.386 grammes, and when filled with another gas at the same temperature and pressure it weighs 157.235 grammes. Find the density of this gas.

Answer. 299 nearly.
(33.) What is the pressure of the atmosphere in grammes weight on each square centimetre of a surface when the barometer stands at 76 centimetres, the density of mercury being 13.596?

Answer. 1,033 grammes.
(34.) To what difference of pressure does a difference of I centimetre in the barometric column correspond?

Answer. 13.596 grammes weight.
(35.) To what temperature must an open flask be heated before one quarter of the air which it contained at $0^{\circ} \mathrm{C}$. is driven out ?

Answer. $91 \circ 7^{\circ} \mathrm{C}$.
(36.) Find the pressure of the atmosphere upon a rectangular area whose diagonal is 44 centimetres and one side 26 centimetres, the temperature being $0^{\circ} \mathrm{C}$. and the pressure 76 centimetres. Answer. $953^{\circ} 637$ kilogrammes.
(37.) A glass flask contains 11572 grammes of air at $0^{\circ} \mathrm{C}$. and 75 centimetres pressure. It contains 12.317 grammes of a gas (A) at $0^{\circ} \mathrm{C}$. and 79 centimetres pressure, and 7221 grammes of a gas (B) at $0^{\circ} \mathrm{C}$. and 70 centimetres pressure. Find the relative densities (air $=I$) of these two gases.

$$
\begin{aligned}
\text { Answer. Density of A } & =\mathrm{I} \circ \mathrm{O} . \\
" \quad \mathrm{~B} & =66 .
\end{aligned}
$$

(38.) What is the hygrometric state in a room at temperature $20^{\circ} \mathrm{C}$. in which the dew-point is found to be $1 I^{\circ} \mathrm{C}$.?

(39.) If a cubic foot of dry air at $60^{\circ} \mathrm{C}$. and 30 inches pressure be saturated with moisture, find what volume it will occupy, the pressure and temperature remaining the same. Maximum tension of aqueous vapour at $60^{\circ} \mathrm{C}$. $=5.86$ inches. Answer. I 2428 cubic feet.
(40.) In the eudiometrical analysis of a hydrocarbon gas, the following numbers were obtained. Find in each case the corrected volume of dry gas at $\circ^{\circ} \mathrm{C}$. and I metre pressure.

Difference
 Observed Temp. of Mercury Height of Volume C. level Barometer

Gas used (moist) . 91.8 c.c. $12.8^{\circ} \quad 623^{\circ} 1 \mathrm{~m} . \mathrm{m} . \quad 752.7 \mathrm{~m} . \mathrm{m}$. Gas after admission
of oxygen (moist) 535° " 129° 160.6 " $751^{\circ} 7$ "
Gas after combus-
tion (moist) . 498.8 " $128^{\circ} 194^{\circ} 0$ " $751^{\circ} 1$ "
Gas after absorption
of CO_{2} (dry) . 454.3 , $130^{\circ} \quad 2377^{\circ} 2$ " $741^{\circ} 5$ "
The maximum pressures of aqueous vapour at the above temperatures are

$$
\begin{array}{rll}
\text { at } 12.8^{\circ} \mathrm{C} . & \quad . \quad 11 \circ \mathrm{~m} . \mathrm{ms} \text {. of mercury. } \\
12.9^{\circ} \mathrm{C} . & 1_{0} 1.1
\end{array}
$$

Answers. 1.04 c.c. $; 295 \cdot 1+$ c.c. $; 259.58$ c.c. $; 218 \cdot 18$ c.c.
(41.) A kilogramme of water at 100° C. mixed with a kilogramme of melting snow without any loss of heat gives 2 kilogrammes of water at $10.3^{\circ} \mathrm{C}$. Find from this the latent heat of water.

Answer. 79.4 units.
(M.)
(42.) A pound of ice, taken out of a mixture of ice and water, mixed with 5 pounds of water at $7 \mathrm{I}^{\circ} \mathrm{F}$., gives 6 pounds of water at 42°. Find how much the quantity of heat required to melt any quantity of ice at 32° would raise the temperature of the same quantity of water at 32°, assuming the specific heat of water constant. Answer. $135^{\circ} \mathrm{F}$. (ist B. Sc.)
(43.) What will be the resulting temperature of the water when 3.5 kilogrammes of crushed ice at $0^{\circ} \mathrm{C}$. are mixed with 45 kilogrammes of water at $32^{\circ} \mathrm{C}$.? Answer. $23.98^{\circ} \mathrm{C}$.
(44.) Into 8.5 kilogrammes of water at $89^{\circ} \mathrm{C}$. there are plunged 1.75 kilogramme of crushed ice at $0^{\circ} \mathrm{C}$. What will be the final temperature of the mixture, assuming that no heat is lost to the containing vessel and that the latent heat of water is 79 ?

Answer. $4793^{\circ} \mathrm{C}$.
(45.) One kilogramme of ice at $0^{\circ} \mathrm{C}$. and 3 kilogrammes of water at $79^{\circ} \mathrm{C}$. are mixed in a closed vessel, the sides of which are supposed to be impervious to heat. The latent heat of water being 79, what will be the temperature of the water after the melting of the ice?

Answer. $39.5^{\circ} \mathrm{C}$.
(46.) If 6 kilogrammes of crushed ice at $0^{\circ} \mathrm{C}$. are mixed with 28 kilogrammes of water at $40^{\circ} \mathrm{C}$., and the latent heat of water is 79 , find the resulting temperature.

$$
\text { Answer. } 19^{\circ} \mathrm{C}
$$

(47.) How much steam at $100^{\circ} \mathrm{C}$. is required to raise the temperature of 54 ounces of water from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$., the latent heat of steam being 540? Answer. 10 ounces.
(48.) The heat produced by the complete combustion of I gramme of carbon in a calorimeter can convert 100 grammes of ice at $0^{\circ} \mathrm{C}$. into water at $0^{\circ} \mathrm{C}$. How many grammes of water could be raised by the same amount of heat from $0^{\circ} \mathrm{C}$. to I° C. ? Latent heat of water, 8o.)

> Answer. 8,000 grammes. (M.)
(49.) The latent heat of steam being 536 , what will be the resulting temperature of 20 litres of water, initially at $4^{\circ} \mathrm{C}$., when one kilogramme of steam at $100^{\circ} \mathrm{C}$. has been condensed in it ?

Answer. $34^{\circ} \mathrm{I}^{\circ} \mathrm{C}$.
(50.) How much water at 45° C. must be mixed with II kilogrammes of crushed ice so that the temperature of the mixture may be $12^{\circ} \mathrm{C}$. ? The latent heat of water is assumed to be 79. Answer. $30 \cdot 333$ kilogrammes.
(51.) What will be the final temperature of the water resulting from the mixture of 8 pounds of crushed ice at $0^{\circ} \mathrm{C}$. with 35 pounds of water at $59^{\circ} \mathrm{C}$. ? Answer. $33.3^{\circ} \mathrm{C}$.
(52.) How many pounds of water at $45^{\circ} \mathrm{C}$. are required in order to reduce 8 pounds of ice to water at $0^{\circ} \mathrm{C}$., the latent heat of water being 79? Answer. 14.044 pounds.
(53.) Find the mass of a cubic metre of air at $30^{\circ} \mathrm{C}$. and 77 centimetres pressure from the following data:-

Mass of one litre of air at $0^{\circ} \mathrm{C}$.
and 76 centimetres pressure.$=1.293$ grammes.
Hygrometric state of the air $\quad=75$
Maximum tension of aqueous vapour at $30^{\circ} \mathrm{C}$.
$=3.45$ centimetres.
Density of aqueous vapour (air $=1$) $=\frac{5}{8}$

> Answer. 1,167 grammes.
(54.) If 8 ounces of zinc at $95^{\circ} \mathrm{C}$. be put into 20 ounces of
water at $15^{\circ} \mathrm{C}$. and the resulting temperature be $18^{\circ} \mathrm{C}$., what is the specific heat of zinc? Answer. 0974 . (Sc. and A.)
(55.) The specific heat of water is 30 times as great as that of mercury. If a pound of boiling water be mixed with a pound of ice-cold mercury, what will be the final temperature of the mixture? Answer. $96.8^{\circ} \mathrm{C}$. (Sc. and A.)
(56.) The specific heat of water is $10 \frac{1}{2}$ times that of copper. If 15 pounds of copper at $80^{\circ} \mathrm{C}$. be immersed in 18 pounds of water at $42^{\circ} \mathrm{C}$., find the temperature to which the water will rise.

Answer. $44.8^{\circ} \mathrm{C}$ (Sc. and A.)
(57.) How many pounds of crushed ice are required to reduce 25 pounds of steam at $100^{\circ} \mathrm{C}$. to water at $0^{\circ} \mathrm{C}$., the latent heat of water being $79^{\circ} 25$ and that of steam 540 ?

Answer. 201.892 pounds.
(58.) When a pound of water at $0^{\circ} \mathrm{C}$. is mixed with a pound of mercury at $100^{\circ} \mathrm{C}$. the temperature of the mixture is $3^{\circ} \mathrm{C}$. Find the thermal capacity of mercury. Answer. $\frac{3}{87}$.
(59.) Compare the quantity of heat which is required in order to heat one pound of water from $0^{\circ} \mathrm{C}$. to $\mathrm{I}^{\circ} \mathrm{C}$. with the quantity which is required in order to convert one pound of ice at $0^{\circ} \mathrm{C}$. into steam at $100^{\circ} \mathrm{C}$. (Latent heat of water $=79.25$; latent heat of steam $=536$.) Answer. $\quad \frac{{ }^{\frac{4}{2}}{ }^{\frac{4}{61}} \text {. (M.) }}{}$
(60.) How much ice at $0^{\circ} \mathrm{C}$. can be converted into water at $0^{\circ} \mathrm{C}$. by an ounce of steam, if we assume heat to be transmitted from the steam only to the ice? (Latent heat of water $=80$; latent heat of steam $=536$.) Answer. 7.95 ounces. (M.)
(61.) A ball of platinum whose mass is 200 grammes is removed from a furnace and immersed in 150 grammes of water at $0^{\circ} \mathrm{C}$. If we suppose the water to gain all the heat which the platinum loses, and if the temperature of this water rises to $30^{\circ} \mathrm{C}$., what is the temperature of the furnace? (Specific heat of platinum $={ }^{\circ}$ o31.) Answer. $755.8^{\circ} \mathrm{C}$. (Sc. and A.)
(62.) A metal calorimeter whose mass is 40 pounds and the specific heat of its material being 12 contains 32.5 pounds of water at $11.5^{\circ} \mathrm{C}$. When 8.25 pounds of another metal at $60.5^{\circ} \mathrm{C}$. are immersed in the water the resulting temperature is $14.6^{\circ} \mathrm{C}$. Find the specific heat of this metal. Answer. 305.
(63.) Steam enters the condenser at a temperature of $212^{\circ} \mathrm{F}$. and the water pumped out of the condenser is at a temperature
of $110^{\circ} \mathrm{F}$., while the temperature of the injection water is $60^{\circ} \mathrm{F}$ What quantity of injection water must be supplied for each pound of steam which enters the condenser, the latent heat of steam at $212^{\circ} \mathrm{F}$. being $966 \cdot 6$?

Answer. $21 \cdot 17$ pounds nearly. (Sc. and A.)
(64.) The specific heat of zinc is ${ }^{\circ} 095$, and 280 grammes of zinc are raised to the temperature of $97^{\circ} \mathrm{C}$. and immersed in 150 grammes of water at $14^{\circ} \mathrm{C}$., contained in a copper calorimeter weighing 96 grammes, the specific heat of copper being 095 . What will be the temperature of the mixture, supposing that there is no exchange of heat except among the substances mentioned? What is the water equivalent of the calorimeter employed?

$$
\begin{array}{ll}
\text { Answers. } & \begin{array}{l}
\text { Final temperature }= \\
\text { Water-equivalent }
\end{array}=95^{\circ} \cdot 89^{\circ} \mathrm{C} . \\
& \\
\text { (Ist B. Sc.) }
\end{array}
$$

(65.) A square metre of a substance I centimetre thick has one side kept at $100^{\circ} \mathrm{C}$. and the other, by means of ice, at $0^{\circ} \mathrm{C}$. In the course of 30 minutes one kilogramme of ice is melted by this operation. Taking the latent heat of water at 79, find the conductivity of this substance in centimetre-gramme-minute units. Answer. ${ }^{\circ} 00263$. (ist B. Sc.)
(66.) A metal plate a quarter of an inch in thickness and 2 feet square has the whole of one face in contact with water which is kept boiling, while the other face is in contact with melting ice, and it is found that 300 pounds of ice are melted in one hour. Find the absolute conductivity of the metal in inch-pound-minute units.

Answer. $\frac{5}{18}$.
(M.)
(67.) A man whose weight is 16 stone walks up a staircase 100 feet high. How much heat does he expend in doing this ?

Answer. $16 \cdot 115$ w. p.-d. C. ${ }^{\circ}$
(68.) Find the distance through which a mass of to pounds can be raised against gravity by the expenditure of the quantity of heat which would be sufficient to raise one pound of water at $0^{\circ} \mathrm{C}$. to $5^{\circ} \mathrm{C}$.

Answer. 695 feet.
(69.) A 16 -pound cannon-ball is stopped by a wall when it is moving with a velocity of 2,500 feet per second. What quantity of heat will be produced by the collision?

Fig. 4.

Fig. 5.
-

